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Digital equalizer types
• Viterbi equalizer: Finds the maximum likelihood (ML) optimal solution to the equalization problem. Its goal is to minimize the 

probability of making an error over the entire sequence.

• Linear equalizer: processes the incoming signal with a linear filter

• MMSE equalizer: designs the filter to minimize E[|e|2], where e is the error signal, which is the filter output minus the transmitted signal.

• Zero forcing equalizer: approximates the inverse of the channel with a linear filter.

• Decision feedback equalizer: augments a linear equalizer by adding a filtered version of previous symbol estimates to the original 
filter output.

• Blind equalizer: estimates the transmitted signal without knowledge of the channel statistics, using only knowledge of the 
transmitted signal's statistics.

• Adaptive equalizer: is typically a linear equalizer or a DFE. It updates the equalizer parameters (such as the filter coefficients) as it 
processes the data. Typically, it uses the MSE cost function; it assumes that it makes the correct symbol decisions, and uses its 
estimate of the symbols to compute e, which is defined above.

• BCJR equalizer: uses the BCJR algorithm (also called the Forward-backward algorithm) to find the maximum a posteriori (MAP) 
solution. Its goal is to minimize the probability that a given bit was incorrectly estimated.

• Turbo equalizer: applies turbo decoding while treating the channel as a convolutional code.



Definition of Kalman filter
• It is an optimal (linear) estimator or optimal recursive data processing 

algorithm.
• Belongs to the state space model (time domain) compared to frequency 

domain 
• Components: system's dynamics model, control inputs, and recursive

measurements (include noise)
• Parameters include indirect, inaccurate and uncertain observations.

• Kalman Filter is a linear adaptive filter which suits for dynamic situation. 
It compute the states recursively and its mathematical formulation is 
based on state space model.
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Covariance



Kalman filter – Concept of States

• To understand the Kalman Filter implementation we first, need to 
understand the basis concepts regarding the motion of the object and 
how the new observations affects the state of the object.

• The state comprises of data based on the past behaviour which is then 
used to predict the future state. 

• The predicted state could have a prediction error, therefore the new 
observations could be used to provide correction.



Kalman filter – Concept of Motion Models (1/5)

• Different motion models have different factors which influence the 
motion of an object. In regards to motion model, there are several 
motions which are possible. Some of them are given below:

• motion in circular path
• high dynamic, which consists of position, velocity and accelaration (PVA).
• low dynamic, which consists of position and velocity (PV).
• Stationary motion only includes position(P).



Kalman filter – Concept of Motion Models (2/5)

• For example, if the dynamics of the system is described by PV motion model. Then
the state equation is defined as:

x(k) = Ak−1 xk−1 + ᵠk

where xk is a state vector

Ak is a state transition matrix

where
Δ(t): is a sample rate.



Kalman filter – Concept of Motion Models (3/5)

• The state transition matrix is a reflection of the motion model. The 
first element of the first row represents the position in the X-
direction, and the third element adds the displacement in X-
direction.

• Similarly the second element of the second row represents the 
motion in Y-direction with displacement in that direction 
represented by the last element of second row. 

• This is acheived when we multiply the state transition matrix with 
the state vector.



Kalman filter – Concept of Motion Models (4/5)

• ᵠk is a process noise which is assumed to be white noise with zero mean and 
covariance Qk

• and it can be expressed as ᵠk = N(0,Qk). The elements of the ᵠk are assumed 
to be uncorrelated overtime, but the instantaneous mutual correlation is 
reflected in the covariance terms of Q.

• The process noise covariance matrix is a function of sample interval Δ(t). The 
process noise covariance matrix is given by,

x(k) = Ak−1 xk−1 + ᵠk



Kalman filter – Concept of Motion Models (5/5)

• The q is a tuning factor which adjusted the variances and 
covariances terms. 

• The noise covariance matrix determines, how much we believe 
that our motion model is correct. 

• Note: our model will have biggest deviation from the real system 
when the real system shows non linear motion i.e., accelaration.



Kalman filter – Concept of Measurement Models (1)
• The relation between the state and the measurement can be described 

by measurement model, which is expressed by following equation:

• Where Hk: is a matrix which maps from state to the measurement.



Kalman filter – Concept of Measurement Models (2)

• Φk is a measurement noise (electrical, image acquision etc., ) which is also 
assumed to be white noise with zero mean and covariance Rk can be 
written as Φk = N(0, Rk). The elements of the

• measurement noise Φk are also assumed to be uncorrelated overtime, 
but the instantaneous non-trivial correlation is reflected in the 
measurement noise covariance terms of Rk, which is expressed as:



Kalman filter – Concept of Measurement Models (3)

• The measurement noise is a function of particular instant in time ’t’. The 
maximum deviation which is possible is  σ, therefore the variance of 
measurement noise is σ2. 

• The measurement noise shows, that how much we are certain about our 
measurements. 

• If it is zero, then we are 100 percent sure that the measurements are correct, but 
in reality there is always some uncertainity which is expressed by the variance of 
noise of the measurement model.



Typical Kalman filter application
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Applications
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http://en.wikipedia.org/wiki/Apollo_program

http://www.lorisbazzani.info/research-2/

http://en.wikipedia.org/wiki/Gps



Hidden Markov Model
• Markov Property :The next n+1 depends 

on n but not the entire past (1…n-1) 
• The state is not clearly visible, but the 

output is visible
• The states give us information on the 

system. 
• The task is to derive the maximum 

likelihood of the parameters that can
predict the states
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Major equation
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Step 1: Build a model
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 Any xk is a linear combination of its previous value plus a 
control signal uk and a process noise.

 The entities A, B and H are in general matrices related to the 
states. In many cases, we can assume they are numeric value 
and constant.

 Wk-1 is the process noise and vk is the measurement noise, 
both are considered to be Gaussian.



Step 2: Start process
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Step 3: Iterate
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Limiting factor
• The main problem with the Kalman filter is the estimation of the initial 

parameters. 

• Although some parameters are updated such as the blending factor or the 
estimate error are updated with time, others like the process noise 
covariance and the measurement noise covariance need to be estimated or 
calculated. This is challenging since they are generally unknown
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Complexity Analysis of Kalman Filter (1)



Complexity Analysis of Kalman Filter (2)
• The multiplication, additions and memory acces defining the critical 

path for the prediction step. 
• The correction step have more equations and therefore more complex 

than the prediction step.
• For evaluating the Kalman Gain, inversion of a matrix of size 2 2 is 

required whose computations are not mentioned in the table
• Simple cofactor based method for finding the inversion requires 16/13 

read/write, 6 multiplications, 3 subtractions and 1 addition. The critical 
path for the correction step is multiplications, additions along with 
memory acces.

• The complexity of Kalman filter lies in the two main expressions:



Complexity Analysis of Kalman Filter (3)

• The predicted error covariance P−k in the prediction step.
• The updated error covariance Pk in the prediction step

• The predicted error covariance P−k requires 416 operations in the prediction step, 
whereas updated error covariance Pk needs 260 operations dominates the overall 
complexity of the Kalman Filter.



Example 1 (1/4)

• Estimate a random constant:” voltage” reading from a source.
• It has a constant value of aV (volts), so  there is no control signal uk. 

Standard deviation of the measurement noise is 0.1 V.
• It is a 1 dimensional signal problem: A and H are constant 1.
• Assume the error covariance P0 is initially 1 and initial state X0 is 0.
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Example 1 (2/4)

Time 1 2 3 4 5 6 7 8 9 10

Value 0.39 0.50 0.48 0.29 0.25 0.32 0.34 0.48 0.41 0.45
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Example 1 (3/4)
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Example 1 (4/4)
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Result of the example 1
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The Extended Kalman filter 
• In simple cases, such as the linear dynamical system just, exact 

inference is tractable; however, in general, exact inference is 
infeasible, and approximate methods must be used, such as the 
extended Kalman filter.

• Unlike its linear counterpart, the extended Kalman filter in 
general is not an optimal estimator
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Properties and conclusion
• If all noise is Gaussian, the Kalman filter minimizes the mean 

square error of the estimated parameters
• Convenient for online real time processing.
• Easy to formulate and implement given a basic understanding.
• To enable the convergence in fewer steps:

• Model the system more precisely
• Estimate the noise more precisely
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