IEE1711 Applied signal processing

Julia Berdnikova julia.berdnikova@taltech.ee

2019 spring

Books and Slides

- John G. Proakis, Dimitris K Manolakis, Digital Signal Processing (4th Edition) (Chapter 9.2, 10.1, 10.2)
- Filter Introduction in Moodle from previous course

IEE1710 Signal processing methods and algorithms (Lecture 11)

Filtering

FIGURE 1. Using a Filter to Reduce the Effect of an Undesired Signal at Frequency f₂, while Retaining Desired Signal at Frequency f₁

Filter types

There are many different bases of classifying filters and these overlap in many different ways; there is no simple hierarchical classification. Filters may be:

- linear or non-linear
- time-invariant or time-variant, also known as shift invariance. If the filter operates in a spatial domain then the characterization is space invariance.
- analog or digital
- discrete-time (sampled) or continuous-time
- passive or active type of continuous-time filter
- infinite impulse response (IIR) or finite impulse response (FIR) type of discrete-time or digital filter.

FIR vs. IIR Filters

• Digital filters with finite-duration impulse response (all-zero, or FIR filters) have both advantages and disadvantages compared to infinite-duration impulse response (IIR) filters.

FIR filters have the following primary advantages:

- They can have exactly linear phase. FIR filters can achieve linear phase response and pass a signal without phase distortion.
- They are always stable.
- The design methods are generally linear.
- They can be realized efficiently in hardware.
- They are easier to implement than IIR filters.
- The filter startup transients have finite duration.

The primary **disadvantage** of FIR filters is that they often require a much higher filter order than IIR filters to achieve a given level of performance. Correspondingly, the delay of these filters is often much greater than for an equal performance IIR filter.

Filter order (digital filter)

The maximum delay, in samples, used in creating each output sample is called the *order* of the filter. For example,

$$y(n) = x(n) - x(n-1) - 2y(n-1) + y(n-2)$$

specifies a particular second-order filter.

Finite Impulse Response (FIR) filter

A finite impulse response (FIR) filter is a filter whose impulse response (or response to any finite length input) is of finite duration, because it settles to zero in finite time. This is in contrast to infinite impulse response (IIR) filters, which may have internal feedback and may continue to respond indefinitely (usually decaying).

An FIR filter of order *N* is characterized by *N+1* coefficients and, in general, require *N+1* multipliers and *N* two-input adders.

https://en.wikipedia.org/wiki/Finite_impulse_response

Ideal Impulse Response

 Table 7.1
 Summary of Ideal Impulse Responses for Standard FIR Filters
 Filter Type Ideal Impulse Response h(n) (noncausal FIR coefficients) $rac{\Omega_c}{\pi}$ for n = 0 $-M \le n \le M$ h(n) =Lowpass: $sin(\Omega_c n)$ for $n \neq 0$ $n\pi$ $\pi - \Omega_c$ for n = 0 π h(n) = $-M \le n \le M$ Highpass: $sin(\Omega_c n)$ for n≠0 nπ $\Omega_H - \Omega_L$ for n = 0h(n) = $-M \leq n \leq M$ Bandpass: $sin(\Omega_H n)$ $sin(\Omega_L n)$ for $n \neq 0$ nπ $n\pi$ $\pi - \Omega_H + \Omega_L$ for n = 0 $-M \le n \le M$ Bandstop: h(n) = $sin(\Omega_L n)$ for $n \neq 0$ $n\pi$ $n\pi$ Causal FIR filter coefficients: shifting h(n) to the right by M samples. Transfer function: $H(z) = b_0 + b_1 z^{-1} + b_2 z^{-2} + \cdots + b_{2M} z^{-2M}$ where $b_n = h(n - M), n = 0, 1, \dots, 2M$.

FIR filter block diagramm (N=31)

TAL TECH https://static.electronicsweekly.com/news/wp-content/uploads/sites/16/2012/05/itemid-55066-getasset.jpg eeweb.poly.edu/iselesni/EL713/zoom/Ch6(1).ppt

DSP(Digital Signal Processor) implementation of FIR filter (Analog Devises ADSP21xx DSP 16bits Fixed Point)

FIR filter structures

• Direct Form FIR

x(n)

k₁

- Cascade Form FIR
- Lattice Form FIR

• Linear-Phase FIR

eeweb.poly.edu/iselesni/EL713/zoom/Ch6(1).ppt

y(n)

k_N

https://commons.wikimedia.org/wiki/File:FIR_Lattice_Filter.png https://commons.wikimedia.org/wiki/File:Fir_filter_polyphase.png https://www.researchgate.net/profile/Marina_Topa/publication/224111908/figure/fig1/AS:302801168158721@1449204832464/Direct-form-FIR-structure.png https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-files/64/7120.FIR_5F00_Structure_5F00_EvenSymetric.gif

Filter design methods:

- Window method
- Frequency sampling method
- Optimal method

Matlab FIR filter summary

Filter Design Method	Description	Filter Functions
Windowing	Apply window to truncated inverse Fourier transform of specified "brick wall" filter	<u>fir1</u> , <u>fir2</u> , <u>kaiserord</u>
Multiband with Transition Bands	Equiripple or least squares approach over sub-bands of the frequency range	<u>firls</u> , <u>firpm</u> , <u>firpmord</u>
Constrained Least Squares	Minimize squared integral error over entire frequency range subject to maximum error constraints	<u>fircls</u> , <u>fircls1</u>
Arbitrary Response	Arbitrary responses, including nonlinear phase and complex filters	<u>cfirpm</u>
Raised Cosine	Lowpass response with smooth, sinusoidal transition	<u>rcosdesign</u>

https://www.mathworks.com/help/signal/ug/fir-filter-design.html

Designing a FIR filter (Windowing method)

- Determine the filter specification
- Select a suitable window function and obtain the window function values
- Specify an ideal frequency response (amplitude and phase responses)
- Compute the ideal filter coefficient values (impulse response) from frequency response
- Multiply the window function values by ideal filter coefficients
- Evaluate the frequency response of the filter
- Implementation

Window functions for FIR filter design

TAL TECH

John G. Proakis, Dimitris K Manolakis, Digital Signal Processing

Windowing method: Matlab FIR design example:

1.) Window-based FIR filter design (returns filter coefficients, as a row vector of length n + 1)

```
bhi = fir1(34,0.48,'high',chebwin(35,30));
freqz(bhi,1)
outhi = filter(bhi,1,x)
```

2.) Frequency sampling-based FIR filter design (returns an *n*th-order FIR filter with frequency-magnitude characteristics specified in the vectors *f* and *m*.)
f = [0 0.48 0.48 1];
mhi = [0 0 1 1];
bhi = fir2(34,f,mhi);
freqz(bhi,1)

Matlab: Filter Visualization Tool (fvtool)

https://www.mathworks.com/help/signal/ref/fvtool.html

Matlab: Filter Designer example

myFilt = designfilt('lowpassfir','PassbandFrequency',0.27, ... 'StopbandFrequency',0.31,'PassbandRipple',0.5, ... 'StopbandAttenuation',70,'DesignMethod','kaiserwin');

fvtool(myFilt)

Design of FIR filter by the Frequency Sampling Method

- It consists simply of uniformly *sampling* the desired frequency response, and performing an inverse DFT to obtain the corresponding (finite) impulse response.
- When the desired frequency-response is *undersampled*, which is typical, the resulting impulse response will be *time aliased* to some extent. It is important to evaluate the final impulse response via a simulated DTFT (FFT with lots of zero padding), comparing to the originally desired frequency response.

https://www.dsprelated.com/freebooks/sasp/Frequency_Sampling_Method_FIR.html

Design of Optimum Equiripple FIR filters

The goal of the algorithm is to minimize the error in the pass and stop bands by utilizing the Chebyshev approximation

Read

1) Parks–McClellan filter design algorithm

https://en.wikipedia.org/wiki/Parks%E2%80%93McClellan_filter_design_algorithm

2) Matlab Parks-McClellan optimal FIR filter design (*firpm()*) https://www.mathworks.com/help/signal/ref/firpm.html

Raised-cosine filter

Frequency response of raised-cosine filter with various roll-off factors

Impulse response of raised-cosine filter with various roll-off factors

https://en.wikipedia.org/wiki/Raised-cosine_filter

Raised-cosine filter

The raised-cosine filter is a filter frequently used for pulse-shaping in digital modulation due to its ability to minimise intersymbol interference (ISI). The roll-off factor, β is a measure of the excess bandwidth of the filter, Impulse responce:

$$h(t) = \begin{cases} rac{\pi}{4T} \operatorname{sinc}\left(rac{1}{2eta}
ight), & t = \pm rac{T}{2eta} \ rac{1}{T} \operatorname{sinc}\left(rac{t}{T}
ight) rac{\cos\left(rac{\pieta t}{T}
ight)}{1-\left(rac{2eta t}{T}
ight)^2}, & ext{otherwise} \end{cases}$$

Frequency responce:

$$H(f) = egin{cases} 1, & |f| \leq rac{1-eta}{2T} \ rac{1}{2} \left[1 + \cos\left(rac{\pi T}{eta} \left[|f| - rac{1-eta}{2T}
ight]
ight)
ight], & rac{1-eta}{2T} < |f| \leq rac{1+eta}{2T} \ 0, & ext{otherwise} \end{cases}$$

GnuRadio Filters

- Low Pass Filter
- High Pass Filter
- Band Pass Filter
- Band Reject Filter
- DC Blocker
- Hilbert
- Rational Resampler
- Frequency Xlating FIR Filter

- transition_bw is the transition bandwidth of the filter in Hz. (This parameter will determine the CPU usage and thus the execution speed of the block.)
- Sample rate: The sample rate of the input signal.

GNURadio example :

GNURadio example: Low pass filter

Low Pass Filter Decimation: 1		😣 🗖 🗊 Properties: Low Pass Filter			
Gain: 1 Sample Rate: 32k Cutoff Freq:	out	Parameters:			
Transition Width: Window: Hamming		ID	low_pass_filter_0		
Beta: 6.76		FIR Type	Complex->Complex (Decimating) 🛟		
		Decimation	1		
		Gain	1		
		Sample Rate	samp_rate		
		Cutoff Freq			
		Transition Width			
		Window	Hamming v		
		Beta	6.76		
		Error Messages: Source - out(0): Port is not connected. Sink - in(0):			
Cancel OK					

Example: First-order low-pass FIR filter Sliding window

