— ТЕПЛОВЫЕ ПРОЦЕССЫ —

Теплообмен – обмен тепловой энергией между физическими телами (или системами), вызванный наличием разности температур этих тел (или систем).

Существуют три вида теплообмена (переноса [передачи] тепла):

теплопроводность (кондукция) (способность материальных тел проводить энергию [теплоту] от более нагретых частей тела к менее нагретым частям тела, осуществляемому хаотически движущимися частицами тел, а также за счёт фотонов — квантов упругих колебаний их кристаллических решёток);

конвекция: естественная и вынужденная (внутренняя энергия передаётся струями и потоками);

тепловое излучение (электромагнитное излучение, возникающее за счёт внутренней энергии тела).

При сочетании элементарных видов образуются сложные виды переноса тепла:

теплоотдача (конвективный теплообмен между потоками жидкости или газа и поверхностью твёрдого тела);

теплопередача (теплообмен от горячей среды [жидкость, газ или твёрдое тело] к холодной через разделяющую их стенку);

конвективно-лучистый перенос тепла (совместный перенос тепла излучением и конвекцией);

термомагнитная конвекция (в основе которой лежит зависимость намагниченности от температуры: в одних и тех же условиях более холодный элемент жидкости более сильно намагничен, и, следовательно, на него действует большая магнитная сила в направлении градиента магнитного поля)

Уравнение теплопроводности

$$q = Q/F$$
,

где q — удельный тепловой поток (удельная тепловая нагрузка), $Bт/m^2$; Q — тепловой поток (расход теплоты), $B\tau$; F — площадь поверхности стенки, m^2 .

Уравнение теплопроводности для установившегося теплового потока через однослойную плоскую стенку:

$$q = \frac{\lambda}{\delta} (t_{\Gamma} - t_{X}),$$

где λ — коэффициент теплопроводности, характеризуется физическими свойствами материала, $\mathrm{Bt/(m\cdot K)};\ \delta$ — толщина стенки, м; $t_{_{\Gamma}}$ и $t_{_{X}}$ — температуры горячей и холодной поверхности стенки, К или °C.

Значения коэффициентов теплопроводности для различных материалов (λ)

Материал	Теплопроводность Вт/(м·К)
Медь	382—390
Алюминий	202—236
Латунь	97—111
Полиэтилен	0,32
Железо	92
Сталь	47
Вспененный полиэтилен	0,06
Вода	0,6
Нефтяные масла	0,12
Воздух (300 К, 100 кПа)	0,026
Воздух (300 К, 10 МПа)	0,1

Теплоизолирующий материал.	Коэффициент теплопроводности (Вт/м*к).
Минеральная вата.	0,045 - 0,07
Целлюлозный утеплитель (эковата).	0,038 - 0,045
Стекловата.	0,033 - 0,05
Пенополистирола (пенопласт).	0,031 - 0,042
Керамзит.	0,16
Керамзитобетон.	0,31
Кирпич керамический, пустотелый.	0,35 - 0,56
Кирпич керамический (красный).	0,56 - 0,76
Железобетон.	2-2,04

Материал	Расчетный коэффициент теплопроводности, λ, Вт/(м°С)
Железобетон	2,04
Бетон на гравии или щебне из природного камня	1,86
Керамзитобетон	0,92
Кирпичная кладка: из сплошного кирпича глиняного обыкновенного (ГОСТ 53080) на цементнопесчаном растворе	0,81
из керамического пустотного плотностью 1400 кг/ м3 (брутто), на цементнопесчаном растворе	0,64
из керамического пустотного плотностью 1300 кг/ м3 (брутто), на цементнопесчаном растворе	0,58
из силикатного на цементнопесчаном растворе	0,87
Пенополистирол	0,05
Плиты минераловатные	0,055

Критерии подобия

В расчётах процессов конвективного теплообмена используют теорию подобия физических процессов путём объединения размерных величин в безразмерные комплексы – критерии подобия.

Таблица

Формула	Название критерия	Величины, входящие в критерий	Значение критерия	
$Nu = \alpha l/\lambda$	Критерий Нуссельта (критерий теплоотдачи)	α — коэффициент конвективной теплоотдачи, $BT/(M^2 \cdot K)$; l — геометрический размер, м; λ — коэффициент теплопроводности материала, $BT/(M \cdot K)$	Характеризует отношение между интенсивностью теплоотдачи и температурным полем в пограничном слое потока. Чем Nu выше, тем интенсивнее процесс конвективного теплообмена	
$ \Pr = v\rho c_p/\lambda = \\ = v/a $	Критерий Прандтля (критерий физических свойств жидкости)	c_p — теплоёмкость жидкости при постоянном давлении, Дж/(кг·К); $a=\lambda/c_p\rho$ — коэффициент температуропроводности, м²/с	Характеризует физические свойства жидкости и способность распространения теплоты в жидкости. Для газов $Pr = 0,671,0$ и зависит только от атомности, для жидкостей $Pr = 12500$, для металлов $Pr = 0,0050,05$	
Re = wl/v	Критерий Рейносльдса (критерий режима движения жидкости)	w — скорость потока, м/c; d — эквивалентный диаметр канала; v —коэффициент кинематической вязкости, м 2 /c	Характеризует гидродинамический режим движения, являясь мерой отношения сил инерции и вязкости. При малых силах инерции и больших силах вязкости движение ламинарное, наоборот – турбулентное	

Окончание таблицы

Формула	Название критерия	Величины, входящие в критерий	Значение критерия
$Ga = Re^2/Fr =$ $= gl^3/v^2$	Критерий Галилея (Критерий подобия полей свободного течения)	$ m Re-$ число Рейнольдса ($ m Re=$ wd/v); $ m Fr-$ число Фруда ($ m Fr=$ w^2/gl)	Характеризует отношение сил тяжести и молекулярного трения в потоке
$Gr = Ga\beta \Delta t =$ $= gl^3 \beta \Delta t / v^2$	Критерий Грасгофа (критерий подъёмной силы)	β — коэффициент объёмного расширения, K^{-1} ; $\beta = 1/T$ — для идеального газа; Δt — разность температур в двух точках системы потока и стенки, K . Если $\rho_{\rm ж}$ и $\rho_{\rm c}$ — плотности жидкости в двух точках системы, то $(\rho_{\rm ж} - \rho_{\rm c}) / \rho_{\rm ж} = \beta \Delta t$; $\beta = 1/(273+t)$	Характеризует гидродинамическое подобие при свободном движении жидкости; отражает соотношение между подъёмной силой, заставляющей всплывать нагретые частицы теплоносителя (архимедова сила), и силой вязкостного трения, препятствующей подъёму этих частиц. Чем Gr выше, тем свободное движение интенсивнее
$Pe = Re \cdot Pr = = wl/a$	Критерий Пекле (критерий теплового подобия)	То же	Характеризует отношение теплопроводного и конвективного переноса теплоты в потоке

Коэффициент теплоотдачи α определяют с помощью экспериментов на моделях и переносят на полномерные объекты, используя **теорию подобия**. Для этого составляются критериальные уравнения типа:

Nu = f(Re, Gr, Pr). При свободной конвекции Nu = f(Gr, Pr); при вынужденной — Nu = f(Re, Pr)

Уравнение теплопередачи

$$Q = KF\Delta t_{\rm cp}.$$

Здесь Q — тепловой поток (расход передаваемой теплоты), Вт; F — площадь поверхности теплопередачи, M^2 ; $\Delta t_{\rm cp}$ — средняя разность температур горячего и холодного теплоносителя, K; K — $\kappa o \phi \phi \mu u u e \mu m$ men n o n e p e da u u (Overall Heat Transfer Coefficient, HT), $B \tau / (M^2 \cdot K)$ определяется по выражению:

$$K_{\rm T} = \frac{1}{\frac{1}{\alpha_{\rm r}} + \sum_{\rm r_{\rm ct}} + \frac{1}{\alpha_{\rm x}}},$$

где $\alpha_{\rm r}$ и $\alpha_{\rm x}$ – **коэффициенты теплоотдачи** для горячего и холодного теплоносителей, ${\rm Bt/(m^2 \cdot K)}; \; \Sigma r_{\rm cr}$ – полное тепловое сопротивление стенки с учётом её поверхностных загрязнений со всех сторон (фактор загрязнения), (м²·К)/Вт.

Теплоносители

В качестве **теплоносителей**, в зависимости от назначения производственных процессов, могут применяться самые разнообразные вещества: *газообразные*, *жидкие и твёрдые*.

При выборе теплоносителя необходимо учитывать их термодинамические и физико-химические свойства, а также технико-экономические показатели.

1) Горячие теплоносители:

ВОДЯНОЙ ПАР

Насыщенный водяной пар — самый распространенный теплоноситель. Обладает *критической точкой*: $p_{\rm kp}$ = **22,136** МПа; $t_{\rm kp}$ = **374,15**°C.

Наиболее часто употребляемое давление пара – от 0,2 до 1,2 МПа.

ГОРЯЧАЯ ВОДА

Наибольшее распространение – в отопительных и вентиляционных установках.

На тепловых электростанциях (**TЭC**) или районных котельных (с паровыми котлами) вода нагревается в специальных паро-водяных подогревателях. На остальных котельных — водогрейные котлы. В центральных тепловых пунктах (**ЦТП**) подогрев — в водо-водяных подогревателях.

В основном: $t_{\text{гор.воды}} = 70...150 (200)^{\circ}\text{C}$; $p_{\text{гор.воды}} = 6...7$ атм. (0,6...0,7 МПа)

2) Горячие продукты сгорания – дымовые и топочные газы

В основном: $t_{\text{газа}} =$ до **1000**°C, т.е. нагрев материала до высоких температур *Недостатки* (по сравнению с водой):

- ✓ плотность и теплоёмкость меньше (нужен больший объём теплоносителя);
- ✓ коэффициент теплоотдачи ниже (нужны большие поверхности нагрева).

3) Высокотемпературные теплоносители (t = 300...400 °C)

Применяются в промышленности для высокотемпературного обогрева.

Теплоноситель	Температура кипения	Теплоноситель	Температура кипения
Минеральные масла	300500	Кремнийорганические соединения	440
Нафталин	218	Нитрит-нитратная смесь	Выше 550
Глицерин	290	Сплав натрий-калий	784

4) Низкотемпературные теплоносители ($t_{\text{кип}} < 0^{\circ}\text{C}$)

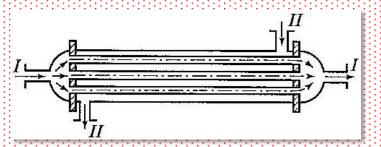
Типичные: аммиак $\mathbf{NH_3}$; диоксид углерода $\mathbf{CO_2}$; сернистый ангидрид $\mathbf{SO_2}$; галоидные производные насыщенных углеводородов.

Применяются в качестве хладагентов в холодильной технике

Теплообменные аппараты

Теплообменными аппаратами (теплообменниками) называются устройства, предназначенные для обмена теплотой между греющей и обогреваемой *рабочими средами*, которые называются теплоносителями.

Теплообменные аппараты классифицируются:

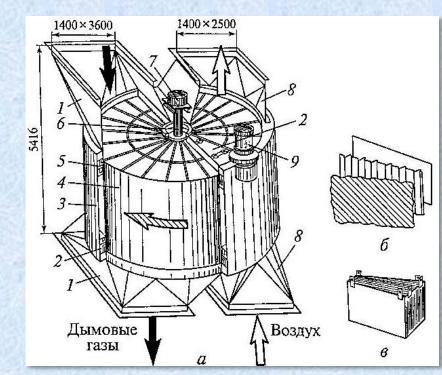

- 1) по назначению: подогреватели, конденсаторы, охладители, испарители, паропреобразователи и т.п.
 - 2) по принципу действия: рекуперативные, регенеративные и смешивающие.

Рекуперативными называются такие теплообменные аппараты, в которых теплообмен между теплоносителями происходит через разделительную стенку, омываемую ими с двух сторон.

Температура нагрева теплоносителя составляет:

 $t=400...500^{\circ}$ С — для конструкций из углеродистой стали;

 $t=700...800^{\circ}$ С – для конструкций из легированных сталей

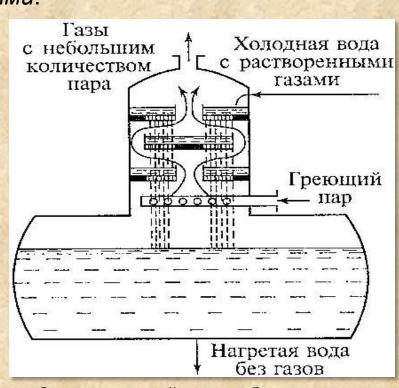

Простейший рекуперативный теплообменник:

I, II – теплоносители

Регенеративными называются такие теплообменные аппараты, в которых два или большее число теплоносителей попеременно соприкасаются с одной и той же поверхностью нагрева. Во время соприкосновения с разными теплоносителями поверхность нагрева или получает теплоту и аккумулирует её, а затем отдаёт, или, наоборот, сначала отдаёт аккумулированную теплоту и охлаждается, а затем нагревается.

Регенеративный воздухоподогреватель:

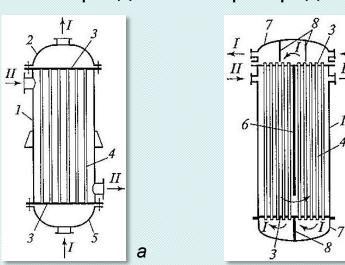
а – общий вид; б – отдельные пластины различной формы; в – секция с пластинами; 1 – газовые патрубки;
2, 5 – радиальное и периферийное уплотнения;
3 – наружный кожух; 4 – набивка; 6 – вал ротора;
7 – верхний и нижний подшипники; 8 – воздушные патрубки; 9 – электродвигатель

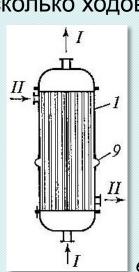


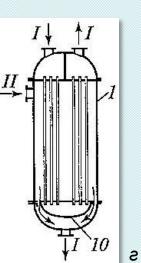
Смешивающими называются такие теплообменные аппараты, в которых тепло- и массообмен происходят при непосредственном контакте и смешивании теплоносителей. Их ещё называют *контактными*.

Тепловая труба – герметичная труба, заполненная частично жидкостью, а частично паром. Оригинальное устройство, использующее в качестве промежуточного теплоносителя пар и его конденсат. Способно передавать большие тепловые мощности.

Тепловая труба с возвратом конденсата под действием гравитационных сил

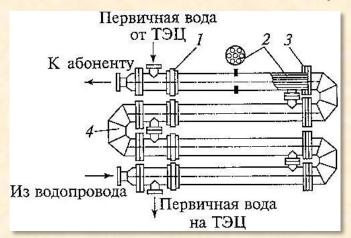


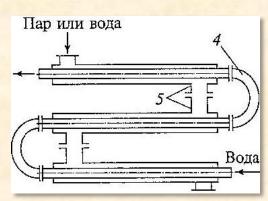

Смешивающий теплообменник для подогрева воды паром при термическом удалении растворённых газов


Кожухотрубчатые подогреватели

Кожухотрубчатые теплообменники представляют собой рекуперативные аппараты поверхностного типа, выполненные из пучков труб, скреплённых при помощи трубных решёток (досок) и ограниченных кожухами и крышками с патрубками.

Трубное и межтрубное пространства в аппарате разобщены, а каждое из них может быть разделено перегородками на несколько ходов.




Кожухотрубчатые теплообменники: a — одноходовый; b — одноходовый; b — одноходовый; b — с линзовым компенсатором; b — с плавающей головкой; b — кожух; b — выходная камера; b — продольные перегородки; b — камера; b — перегородки в камере; b — линзовый компенсатор; b — плавающая головка; b —

Секционные теплообменники

Секционные теплообменники представляют собой разновидность трубчатых аппаратов и состоят из нескольких последовательно соединённых секций, каждая из которых представляет собой кожухотрубчатый теплообменник с малым числом труб и кожухом небольшого диаметра.

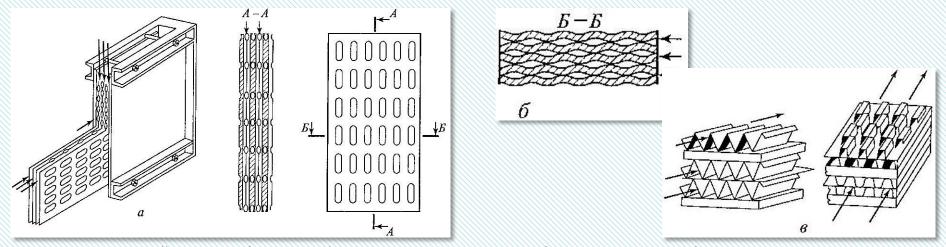
Их недостатки: высокая стоимость единицы поверхности нагрева; значительные гидравлические сопротивления.

Секционные теплообменники:

а – водяной подогреватель теплосети

б – типа «труба в трубе»

1 – линзовый компенсатор; 2 –трубки; 3 – трубная решётка с фланцевым соединением с кожухом;


4 – «калач»; 5 – соединительные патрубки

Пластинчатые теплообменники

Пластинчатые теплообменники имеют плоские поверхности теплообмена. Обычно их применяют для теплоносителей, коэффициенты теплоотдачи которых одинаковы.

Недостатки: малая герметичность; незначительные перепады давления между теплоносителями; трудность чистки внутри каналов, ремонта, частичной замены поверхности теплообмена; невозможность их изготовления их чугуна и хрупких материалов и длительная эксплуатация.

Достоинства: компактность; небольшая площадь поверхности теплообмена; небольшая масса.

Пластинчатый теплообменник (a); элемент его пакета (б); пластины с рёбрами разной формы для теплообменника типа «газ–газ» (в)

Основные этапы расчёта кожухотрубчатого теплообменного аппарата

- определение общих характеристик процесса, включая ориентировочное определение максимальной поверхности теплообмена;
- определение коэффициентов теплоотдачи и теплопередачи для различных режимов течения жидкости в трубах;
- определение запаса площади поверхности теплообмена и окончательный выбор теплообменных аппаратов