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Multi-Standard Software Radio Receiver
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Channelizers
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Channelization

A process where a single, few or all channels from a certain frequency band are
separated for further processing

1 AAAAAAAS

-400 - 400 fs = 800kHz
—
_ Af= 100kHz ’

Separation of single/mult&__' / \ fs = 100kHz
or all channels at baseband 0
with desired sampling freq.
fs = 160kHz
0

fs = 120kHz
Channelization Methods: 0

* Per channel Approach (Straight forward way)
* Pipelined Frequency Transform

* Polyphase FFT



Per Channel Approach
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Polyphase Channelizer
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Polyphase parameters

— Input sampling frequency(fs)
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Pipelined Frequency Transform

Based on binary tree of down-converter and
sample-rate converter

Divide the input band into two halves with half
sampling rate

Again split each half band into two sub-bands, and
so on un-till the last tree level produces the
required seperated channels

More expensive in term of silicon area, because of
many more single channel channelizer
requirements

Less flexible as it require channels to be equal
bandwidth and uniformly distributed.



Comparison & Selection

Channelizer Algorithms

high number of channels

Aspects r—
Per Channel lpelined Frequency Polyphase FFT
Transform
Computational Complexity for Poor Good Excellent

Upto 128-256

256 channels &

(Addition & Removal of

Channels)

Silicon Cost Efficiency Upto 3-20 channels
channels above
Independent Yes No No
Channels
Initial Design Number of INT INT
Flexibility Channels selectable 2 Preferable 2
Intermediate No Yes No
outputs
Flexibility for reconfiguration
Excellent Poor poor

TU Delft: Master’s Thesis by Gil Savir
(Faculty of Electrical Engineering, Mathematics and Computer Science)

Per-channel approach wins in many aspects, but its implementation for
high number of channels is infeasible

Polyphase channelizer is most suitable for SDR wideband channelizer
front end



Polyphase Channelizer
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Polyphase Channelizer
Transformation



Transformation (Step 1)

Equivalence Theorem:

”Operation of down-conversion, followed by a LPF are totally equivalent to the
operation of BPF followed by a down conversion”
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Equivalence Theorem & e B

Digital
Sequence of maneuvers % Lowpass fite
—> H(@z) >y M
. . X[n] ylnk] yInM,k]
« Slide the input heterodyne through the lowpass
filter to their output
Digital -0 n

« By doing so, it converts the lowpass filter to a band-pass fiter  ©
complex bandpass filter _é_»

—> HEze W

vM —

« Slide the output heterodyne to the downside of

Xn] yInk] yInM k]
the down-sampler
« Doing so, it aliases the centre frequency of the Digtal Mo,
OSCi | |ator band-pass filter
« Restrict the centre frequency of bandpass to be —> HZe™) oM
a multiple of the output sample rate. X[n] yInM K]
« Doing so, assure aliases of the selected Digial
passband to the baseband by re-sampling band-pass filter
operation

« Discard the un-necessary heterodyne

X[n] y[nM k]

Note: 6, should be an integer multiple of (21r/M)



Transformation (Step 2)

Noble Identity:

” A filter processing every Mth input sample followed by an output M-
to-1 down sampler is the same as an input M-to-1 down sampler
followed by a filter processing every Mth input sample”
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Transformation (Step 2)
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Transformation (Step 2)
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Re-sampling M-Path down converter



Phase Coherent summation & FFT
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Polyphase Channelizer
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Polyphase filter bank parameters

Sampling Frequency, Number of Channels, Spectral Spacing,
Output Sample Rate.

Js = N *Af

DFT performs the task of seperating the channels after polyphase
filter, so it is natural to conclude that transform size is equal to
number of channels.

The filter bandwidth is determined by the weights of the lowpass
prototype filter, and it is common for all the channels.

Channelizer is used to seperate the adjacent communication
channels, which are characterized by the specifc center frequency
and non-overlapping bandwidth



Maximally & Non-Maximally
Decimated System

"A system is said to be Maximally Decimated when the ouput
sample rate is equal to the inter-channel spacing otherwise it is
non-maximally decimated system ”
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Computational Complexity

Work Load = Filter Length / Sample Ratio
= (no.of ops/output) / (input/output)
= no.of ops / input



Prototype Filter Work Load

Oustput data
at baseband and al
L reguired sampling rate

|IB|4? _— |2 |1 |
Inglot Towpass fiter
sampled Data I'I{l'l}

Dowwm-carvearter

Complex Heterodyne
dz b i

| Lowpass
| Prototype
| Filter
|
|

Input
sampled Data

il

512-Taps

Lowpass
Prototype
Filter
512-Taps

byi




Polyphase Filter Work Load
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Computational Complexity

Does It make sense to use Polyphase filter for the
Channelization ...... ??7?

Yes



Computational Complexity

1792 ops. per 48 input
work load = 1792/48 = 38 ops/input.
Note:

Polyphase channelizer forms 64 channels at the output and therefore, we
conclude that polyphase form should be used even if just few output
channels are required.

Channelizer Algorithms

Aspects

Per Channel

Pipelined Frequency
Transform

Polyphase FFT

Computational Complexity for

high number of channels

Poor

Good

Excellent

Silicon Cost Efficiency

Upto 3-20 channels

Upto 128-256

256 channels &

channels above
Independent Yes No No
Channels
Initial Design Number of INT INT
Flexibility Channels selectable 2 Preferable 2
Intermediate No Yes No
outputs
Flexibility for reconfiguration
(Addition & Removal of Excellent Poor poor

Channels)

TU Delft: Master’s Thesis by Gil Savir
(Faculty of Electrical Engineering, Mathematics and Computer Science)



