# **IEE 1711: Applied Signal Processing**

Professor Muhammad Mahtab Alam (muhammad.alam@taltech.ee)

Lab Instructor: Julia Berdnikova



#### **Outline**

- Lecture 12: Software Defined Radio Architectures Bandpass sampling
  - Brief Followup
- Lecture 12: SDR Cont...
  - Channelizer's design for SDR
    - Selection of Channelizer
    - Polyphase Cahnnelizer
    - Computational Complexity
  - Summary
  - Source: "Digital Receivers and Transmitters Using Polyphase Filter Banks for Wireless Communications"

# **Proposed Software Radio Receiver Architecture**

- Digital RF front end
- Digital IF (Decimation & Downconversion)



#### **Multi-Standard Software Radio Receiver**

#### **System Block Diagram**



### **Channelizers**



### **Channelization**

A process where a single, few or all channels from a certain frequency band are separated for further processing



- Per channel Approach (Straight forward way)
- Pipelined Frequency Transform
- Polyphase FFT

### **Per Channel Approach**



## **Polyphase Channelizer**



- Polyphase parameters
  - Input sampling frequency(fs)
  - Inter-carrier spacing (∆f)
  - Number of channels (M)

### **Pipelined Frequency Transform**

- Based on binary tree of down-converter and sample-rate converter
- Divide the input band into two halves with half sampling rate
- Again split each half band into two sub-bands, and so on un-till the last tree level produces the required seperated channels
- More expensive in term of silicon area, because of many more single channel channelizer requirements
- Less flexible as it require channels to be equal bandwidth and uniformly distributed.

### **Comparison & Selection**

| Aspects                                                                |                         | Channelizer Algorithms |                                  |                             |
|------------------------------------------------------------------------|-------------------------|------------------------|----------------------------------|-----------------------------|
|                                                                        |                         | Per Channel            | Pipelined Frequency<br>Transform | Polyphase FFT               |
| Computational Complexity for high number of channels                   |                         | Poor                   | Good                             | Excellent                   |
| Silicon Cost Efficiency                                                |                         | Upto 3-20 channels     | Upto 128-256<br>channels         | 256 channels & above        |
| Initial Design<br>Flexibility                                          | Independent<br>Channels | Yes                    | No                               | No                          |
|                                                                        | Number of<br>Channels   | selectable             | 2 <sup>INT</sup>                 | Preferable 2 <sup>INT</sup> |
|                                                                        | Intermediate outputs    | No                     | Yes                              | No                          |
| Flexibility for reconfiguration<br>(Addition & Removal of<br>Channels) |                         | Excellent              | Poor                             | poor                        |

TU Delft: Master's Thesis by Gil Savir (Faculty of Electrical Engineering, Mathematics and Computer Science)

Per-channel approach wins in many aspects, but its implementation for high number of channels is infeasible

Polyphase channelizer is most suitable for SDR wideband channelizer front end

### **Polyphase Channelizer**



- Polyphase parameters
  - Input sampling frequency(fs)
  - Inter-carrier spacing (∆f)
  - Number of channels (M)

# Polyphase Channelizer Transformation

## **Transformation (Step 1)**

#### **Equivalence Theorem:**

"Operation of down-conversion, followed by a LPF are totally equivalent to the operation of BPF followed by a down conversion"



$$\begin{array}{c|c} \text{Digital} & e^{-j\theta_k n} \\ \hline & H(Ze^{-j\theta_k n}) \\ \hline X[n] & y[n,k] & y[nM,k] \end{array}$$

$$y(n,k) = [x(n)e^{-jn\theta_{k}}] * h(n)$$

$$y(n,k) = \sum_{r=0}^{N-1} x[n-r]e^{-j\theta_{k}(n-r)}h(r)$$

$$= \sum_{r=0}^{N-1} x[n-r]e^{-jn\theta_{k}}h(r)e^{-jr\theta_{k}}$$

$$= e^{-jn\theta_{k}} \sum_{r=0}^{N-1} x[n-r]h(r)e^{-jr\theta_{k}}$$

# **Equivalence Theorem & Sequence of maneuvers**

- Slide the input heterodyne through the lowpass filter to their output
- By doing so, it converts the lowpass filter to a complex bandpass filter
- Slide the output heterodyne to the downside of the down-sampler
- Doing so, it aliases the centre frequency of the oscillator
- Restrict the centre frequency of bandpass to be a multiple of the output sample rate.
- Doing so, assure aliases of the selected passband to the baseband by re-sampling operation
- Discard the un-necessary heterodyne









Note:  $\theta_k$  should be an integer multiple of  $(2\pi/M)$ 

## **Transformation (Step 2)**

#### **Noble Identity:**

"A filter processing every Mth input sample followed by an output M-to-1 down sampler is the same as an input M-to-1 down sampler followed by a filter processing every Mth input sample"



# **Transformation (Step 2)**



## **Transformation (Step 2)**

$$H(z) = \sum_{n=0}^{N-1} Z^{-n} h(n)$$

$$G(z) = H(z) \big|_{z=e^{j\theta}z} = H(e^{-j\theta}z)$$

$$H(ze^{-j(2\pi/M)k}) = \sum_{r=0}^{M-1} Z^{-r} e^{j(2\pi/M)rk} H_r(z)$$

$$y(nM, k) = \sum_{r=0}^{M-1} y_r(nM) e^{j(2\pi/M)rk}$$

Re-sampling M-Path down converter

### **Phase Coherent summation & FFT**



## **Polyphase Channelizer**



- Commutator to down-sample the data rate
- Polyphase partitioned filter
- Complex phase rotators to extract the individual channels is equivalent to the M point FFT operation.

### **Polyphase filter bank parameters**

Sampling Frequency, Number of Channels, Spectral Spacing, Output Sample Rate.

$$fs = N * \Delta f$$

- DFT performs the task of seperating the channels after polyphase filter, so it is natural to conclude that **transform size is equal to number of channels**.
- The filter bandwidth is determined by the weights of the lowpass prototype filter, and it is common for all the channels.
- Channelizer is used to seperate the adjacent communication channels, which are characterized by the specifc center frequency and non-overlapping bandwidth

# Maximally & Non-Maximally Decimated System

"A system is said to be Maximally Decimated when the ouput sample rate is equal to the inter-channel spacing otherwise it is non-maximally decimated system"

#### **Maximally Decimated**



#### **Non-Maximally Decimated**



## **Computational Complexity**

Work Load = Filter Length / Sample Ratio

= (no.of ops/output) / (input/output)

= no.of ops / input

### **Prototype Filter Work Load**



### **Polyphase Filter Work Load**



## **Computational Complexity**

Does It make sense to use Polyphase filter for the Channelization ..... ???

Yes

### **Computational Complexity**

1792 ops. **per 48 input** work load = 1792/48 = 38 ops/input.

#### Note:

Polyphase channelizer forms 64 channels at the output and therefore, we conclude that polyphase form should be used even if just few output channels are required.

| Aspects                                                                |                         | Channelizer Algorithms |                                  |                             |
|------------------------------------------------------------------------|-------------------------|------------------------|----------------------------------|-----------------------------|
|                                                                        |                         | Per Channel            | Pipelined Frequency<br>Transform | Polyphase FFT               |
| Computational Complexity for high number of channels                   |                         | Poor                   | Good                             | Excellent                   |
| Silicon Cost Efficiency                                                |                         | Upto 3-20 channels     | Upto 128-256<br>channels         | 256 channels & above        |
| Initial Design<br>Flexibility                                          | Independent<br>Channels | Yes                    | No                               | No                          |
|                                                                        | Number of<br>Channels   | selectable             | 2 <sup>INT</sup>                 | Preferable 2 <sup>INT</sup> |
|                                                                        | Intermediate outputs    | No                     | Yes                              | No                          |
| Flexibility for reconfiguration<br>(Addition & Removal of<br>Channels) |                         | Excellent              | Poor                             | poor                        |

TU Delft: Master's Thesis by Gil Savir

(Faculty of Electrical Engineering, Mathematics and Computer Science)