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• Discrete Time          Periodic Frequency

• Anti-aliasing Filter

• Or choose the sampling frequency sufficiently high

Potentionally we may get this scenario !!
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Let’s assume we have a sequence x[n], and on this sequence we want to

do re-sampling.

“Sampling of Sampled Signals”

• Pick out Samples                    Down Sampling

• Insert new Samples                Up Sampling

Sampling Sequence described by IDFT
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Sum of M complex Sequences
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Sample Sequence off-set from zero
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Frequency domain representation of SM[n-r] is identical to 

frequency domain representation of SM[n] except for a phase shift
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• xo[nM] contains the same number of the samples as x[n], 
therefore no sample rate change so far

In order to change the sample rate and at the same time get rid of the 

freq. domain periodicity, we introduce the concept of Multi-rate filters.
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The Concept of Down-sampling
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h[m] performs bandwidth reduction by interpolating between the

original samples

Similarly for Up-Sampling
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Multi-Standard Radio

• A transceiver with multi-band and multiple standards is a front-end that can 

be operated in number of different frequency bands.

• The increasing trend toward a single device integrating several features and 

capabilities encourage the companies and research centers to develop the 

multi-standard, mutli-mode ‘all-in-one’ front end.

UMTS Downlink

WLAN Downlink

SATELLITE DVB, DAB
BLUETOOTH, 

ZIGBEE

GSM, 3G, 

WIMAX

User 

Equipment (UE)



Multi-Standard Radio (UMTS & WLAN)

Limitations:

• Channels interference among the standards is very high

• Mobile Applications (UMTS,WLAN) 

• Possible Scenario 

UMTS WLAN 802.11g

Frequency Bands 2110 - 2170 MHz: DL 2.4 - 2.4835 GHz

Receiver Sensitivity -117 dBm -82 to -65 dBm

Channel Bandwidth 3.84 MHz             16.6 MHz 

Number of channels 12 3

Specifications:



Architecture

Cognitive Radio

Software Defined

Radio

Digital Radio

µp-
controlled
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Moore’s Law:
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Moore’s Law: 

Number of Transistors are increasing by a factor of 2 after every second year.

Key Features: Reconfigurable, Programmable

Possible Choices:

GPP, DSP, FPGA 



Digital Radio (Receiver)
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• The gain and phase imbalance 

between the two paths from the IF 

stage till the baseband in an N-

channel Rx is the cause of crosstalk 

between the I and Q quadrature 

components

• The precision of coefficients used in 

the filtering process sets an upper 

bound to spectral artifacts levels at 

−5dB/bit, so the 12bitADC will have an 

image level below 60dB

1. Spectral images are below              

the noise floor of ADC.

2. Digital filters designed to have 

linear phase characteristic



Down Conversion Techniques 
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Direct Conversion Architecture

Bandpass Sampling Architecture

• Direct Conversion architecture digitize 

the input signal at RF and  down-

convert directly to base band.

• Direct Conversion architecture

requires an additional down-converter

at IF before getting the signal at 

baseband. 

• Band pass sampling architecture 

does not require additional circuits for 

down conversion prior to quantization.



Proposed Software Radio 
Receiver Architecture

• Digital RF front end     

• Digital IF (Decimation & Downconversion )
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Multi-Standard Software Radio Receiver
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Nyquist Theorem:

”A signal must be sample at a rate greater than twice of its maximum 

frequency to ensure un-ambiguous data”

Sampling Theory



Time Representation

Frequency Representation



Frequency-domain representation of 1MHz signal lying at different spectrum 

positions, illustrating non-overlap aliases. 

Shannon’s Theorem

fs > 2B

Bandpass Sampling Theory



Example:

Frequency-domain representation of 1MHz signal lying between 6 to 7 MHz

in the spectrum, under-sampled at 2MSPS produces non-overlap aliases at 

multiples of sampling frequency. The original signal is aliased to baseband

i.e. DC to 1MHz.

Bandpass Sampling Theory


