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The Kalman filtering framework

Typical state-space model:

Tpy1 = Az + Brug + wy

Yy = Crxy + vg

where x;. is the state-variable, uy is the input signal, yx is the output,
and wg and vy are noise-sources all at time k. The recursive model is
initialized at time k£ = 0.

The Kalman filter computes the MMSE estimate of the state-vector
Tk 1 based on the past input {ug, u1,...,ur} and output {yo,vy1,..-,yr}
for Gaussian noise-sources.

For non Gaussian noise-sources, the Kalman filter computes an LMMSE
estimate.



State-space model for auto-regressive model AR(2)

Yk = P1Yk—1 + P2Yk—2 + Wk.
Formulated using a state-space model:

x | &l Tk + L w
Y — [ 1 0 ]Zbk
Let's verify that the state-space model implements an AR(2) model,

1 1 9
Ty = Q10 + T + wy

2 1
Thy1 = P27}

Changing time-index in the last equation x% = ¢z, and inserting into
the first equations gives the wanted result for y = ;.



State-space model for moving average model MA(2)

Y = wi + thwg—1 + Oawg—o2.
Formulated using a state-space model:

0O 1 O 1
Ter1= 10 0 1 |xp+ | 01 | wg
0 0 0 i 65 |

ye =11 0 0 |x.
Changing time-indices and combining the equations

1 2
:Uk+1 — xk —I_ Wi
2 3
:Uk+1 :xk+91wk

3

gives the result.



State-space model for ARMA(2)

Yk = P1Yk—1 + G2yk 2wk + O1wg 1 + O2wg 2.
Formulated using a state-space model:

o 1 0 1]
Tpr1= | @2 0 1 | zp+ | 01 | ws
_O 0 O_ _92_

ye=11 0 0 |x.
Changing time-indices and combining the equations
Tpy1 = G120, + T + Wi

2 1 3
L1 = ¢237k; + Xy, + 01w,

3

gives the result.



Rational transfer functions

Consider
Y(2) bo + b1z7 1t + byz™?

H = = .
(2) Wi(z) 1+az7t+az72+azz=3

One realization of a state-space model:

—aq 1 0 bo
Tht1 = —ay 0 1 | xp+ b1 | wg
i —das 0 O i i bg i
Another state-space model:
I —a1 —a —das | i 1 |
Tht1 = 1 0 0 zr+ | 0 | wg
0 1 0 0




Proper transfer functions
If the numerator and denominator have same degree we use polynomial
division.
C1/82% +1/222+1/22+1/8 1/22* +11/24z+1/8 Iy
B 2341/3z B 234+1/3z

H(z)

We realize it as

Tri1 = Azg + Bwy
Y — Ca:k + Dwk

with D =1/8, i.e.,

0 —1/3 0 | 1
Thk+1 = 1 0 O [xzx+ | O | wg
0 1 0 0

ype = 1/2 11/24 1/8 Jzi + 1/8wy,.



Transfer function of a state-space model

Let us derive the transfer function of the state-space model

Tht1 = Axy + Bwy

yr = Czi + Dwy.

Using the z-transform we get
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The stochastic setup

We consider a jointly Gaussian variable (X,Y") where X and Y are vector
valued random variables with mean and covariance

e(¥)-[e] =¥ ) (3o |-

Let us estimate X based on knowledge of Y as,
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R
Ry

ry
vy
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T=DEX|Y =y = / rpx|y (zly)dx

— 00

1.e., we define the estimate as a conditional mean.



Conditional mean is conditional MMSEE

The conditional mean minimizes the conditional mean-squared error. To
see this, let z be any estimate of X.

e=E[(X —2)" (X —2)|Y =y
= B[X'X|Y =y - 2TE[X|Y =y] + 22
= (z - E[X|Y =y])" (z = E[X|Y = y]) + E[X"X|Y =y
— EIX|Y =y]"E[X|Y = y].

Only the first term depends on z, so
z=1=FEX|Y =y

minimizes the conditional mean-squared error.



Unconditional MMSEE

In terms of minimum error variance, the conditional mean
X(y) = EX|Y =y
is optimal, i.e.,
Expy[IX = XWI? 1Y =y < Expy[IX = Zw)|? | Y = 9]

for any function Z that may depend on y. Taking expection over Y on
both side gives us

Exy[|X - X(Y)|’] < Exy[IX - Z(Y)|*

or loosely

E[|X — #°] < E[||IX — 2|?]
1.€., the conditional mean is also optimal in the unconditional minimum
variance sense.
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What does the Kalman filter do?

For a state-space model

Tr+1 = Axrr + Brug + wg

yr = Crxr + vy
the Kalman filter minimizes the conditional error variance

E[ka—i—l - 5%/64—1“2 | Yo, - - -5 Yk, UQ, - - - 7u/€]

with
jjk—i—l — E[ij—l—l ‘ Yo, - - -5 Yk, U0, - - - 7uk]‘

The Kalman filter does this in a recursive way, i.e., 11 can be computed

using only 2, yr and ug.
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The jointly Gaussian conditional distribution

The conditional distribution can be written using Bayes' rule as

fXY(xay)
fry)

fX|Y(97|?J) =
which for a jointly Gaussian distribution is equal to

_1/2
|RXX Rxy /

1 Ryx Ryy
2m)m/2 [Ryy|~1/2

T 1
T — Uy Rxx Rxy T — [y
—1/2
eXp{ / [y—ﬂy] [RYX RYY] [y—ﬂy]}

exp{—1/2(y — py) ' Ryvy(y — py) }

fX|Y(iU|?J) — (
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Cholesky factorizations - a useful sidestep

Consider a positive definite matrix A partitioned as

A:[All CL12].

az1 a22

We wish to factor the matrix as A = UDU?', with U unit-diagonal
upper-triangular and D a positive diagonal matrix.

A__U11 U12][D11 0 ][Uﬂ 0]
= T

i 0 1 0 d22 Uqo 1
_ [ doouiouly, + U D11 UL dosud,
] daauis do2

i.e., we have the outline of a recursive procedure for computing UDU*,

a2 T T
doo = a2, Upp = —, Ui11D11U{; = A11 — dasuiouis.

a2
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Block-diagonal factorization

Let's try the same idea for a block-diagonal factorization

An Al [I X1[Dn o I 0
Aoy Ao o I 0 1 0 Dos XT T
| D11+ XDy XT XDoy
Doy X7 Doy |

It follows that
Doy = Aso, X = A12A2_21, Dy = A — A12A2_21A21,

1.€.,

An A | _ | T A1p AL, Ay — ApAL Ay 0 I 0
A1 Ass 0 I 0 Aos Apt Ay T
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Inverse factorization

What we need is

A1 I 0 (Aj1 — A1 A As))™ 0 I —AppAL
T AR Ay T 0 Ay 0 I

If we denote Sll = (All — A12A2_21A21)_1 then we have

[ All A12 ]1 _ [ Sll —5111412142_21 ]
A1 Ao — A9 A21511 A2_21 +A2_21A21511A12A2_21

and

[ x ]T [ S11 —511A12A2_21 ] [ x ] _
Y —Ago A1 S Ay + Asy A1 S11A10A, Y
(z — A12A55y) " Sz — A4S y) + vy A5y y.
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Back to the jointly Gaussian conditional distribution

Using the results for the inverse factorization we have that

[ZU—,LLx]T[RXX Rxy | ' [ & —pa _
Y — Hy Ryx Ryy Y — Ly

(¢ —2)"(Rxx — RxyRyyRyx) " (x = 2) + (y — )" Ryy (¥ — piy)

where T = u, + RXYR;,%,(y — l4y). In other words,

 |Rxx — RxyRyy Ry x|~1/?
fX|Y('CU|y) — (27T)m/2 X

exp{—1/2(z — 7)" (Rxx — RXYR;/%/RYX)_l(ZC — )}
describes a Gaussian distribution with

E[X |Y] = ps + Rxy Ry (y — 1)
COV(X ’ Y) = RXX — nyR;%/Ryx.
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Conditioning for uncorrelated variables

Assume that X, Y7,Y5,...,Y,, are jointly Gaussian and that Y7,Y5,....Y,,
are mutually uncorrelated. Then

This follows from
E[X |Y1,Ya, ..., Yol = po + Rxy Ryy (y — )

by observing that Ryy is a diagonal matrix for uncorrelated variables
Yi,....Y,.

In the next lecture we will combine these results and derive the solution
the Kalman filter.
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