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The Kalman filtering framework

Typical state-space model:

xk+1 = Akxk + Bkuk + wk

yk = Ckxk + vk

where xk is the state-variable, uk is the input signal, yk is the output,
and wk and vk are noise-sources all at time k. The recursive model is
initialized at time k = 0.

The Kalman filter computes the MMSE estimate of the state-vector
xk+1 based on the past input {u0, u1, . . . , uk} and output {y0, y1, . . . , yk}
for Gaussian noise-sources.

For non Gaussian noise-sources, the Kalman filter computes an LMMSE
estimate.
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State-space model for auto-regressive model AR(2)

yk = φ1yk−1 + φ2yk−2 + wk.

Formulated using a state-space model:

xk+1 =

[

φ1 1
φ2 0

]

xk +

[

1
0

]

wk

yk = [ 1 0 ]xk.

Let’s verify that the state-space model implements an AR(2) model,

x1
k+1 = φ1x

1
k + x2

k + wk

x2
k+1 = φ2x

1
k.

Changing time-index in the last equation x2
k = φ2x

1
k−1

and inserting into
the first equations gives the wanted result for yk = x1

k.
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State-space model for moving average model MA(2)

yk = wk + θ1wk−1 + θ2wk−2.

Formulated using a state-space model:

xk+1 =





0 1 0
0 0 1
0 0 0



xk +





1
θ1

θ2



wk

yk = [ 1 0 0 ]xk.

Changing time-indices and combining the equations

x1
k+1 = x2

k + wk

x2
k+1 = x3

k + θ1wk

x3
k+1 = θ2wk

gives the result.
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State-space model for ARMA(2)

yk = φ1yk−1 + φ2yk−2wk + θ1wk−1 + θ2wk−2.

Formulated using a state-space model:

xk+1 =





φ1 1 0
φ2 0 1
0 0 0



 xk +





1
θ1

θ2



 wk

yk = [ 1 0 0 ]xk.

Changing time-indices and combining the equations

x1
k+1 = φ1x

1
k + x2

k + wk

x2
k+1 = φ2x

1
k + x3

k + θ1wk

x3
k+1 = θ2wk

gives the result.
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Rational transfer functions

Consider

H(z) =
Y (z)

W (z)
=

b0 + b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2 + a3z−3
.

One realization of a state-space model:

xk+1 =





−a1 1 0
−a2 0 1
−a3 0 0



 xk +





b0

b1

b2



 wk

yk = [ 1 0 0 ]xk.

Another state-space model:

xk+1 =





−a1 −a2 −a3

1 0 0
0 1 0



xk +





1
0
0



 wk

yk = [ b0 b1 b2 ]xk.
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Proper transfer functions

If the numerator and denominator have same degree we use polynomial
division.

H(z) =
1/8z3 + 1/2z2 + 1/2z + 1/8

z3 + 1/3z
=

1/2z2 + 11/24z + 1/8

z3 + 1/3z
+ 1/8

We realize it as

xk+1 = Axk + Bwk

yk = Cxk + Dwk

with D = 1/8, i.e.,

xk+1 =





0 −1/3 0
1 0 0
0 1 0



xk +





1
0
0



 wk

yk = [ 1/2 11/24 1/8 ]xk + 1/8wk.
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Transfer function of a state-space model

Let us derive the transfer function of the state-space model

xk+1 = Axk + Bwk

yk = Cxk + Dwk.

Using the z-transform we get

zX(z) = AX(z) + BW (z)

Y (z) = CX(z) + DW (z)

which gives the result

Y (z) =
[

C(zI − A)−1B + D
]

W (z).
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The stochastic setup

We consider a jointly Gaussian variable (X,Y ) where X and Y are vector
valued random variables with mean and covariance

E

(

X
Y

)

=

[

µx

µy

]

, E

[

(

X − µx

Y − µy

)(

X − µx

Y − µy

)T
]

=

[

Rxx Rxy

Ryx Ryy

]

.

Let us estimate X based on knowledge of Y as,

x̂ = E[X|Y = y] =

∫ ∞

−∞

xpX|Y (x|y)dx

i.e., we define the estimate as a conditional mean.
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Conditional mean is conditional MMSEE

The conditional mean minimizes the conditional mean-squared error. To
see this, let z be any estimate of X.

ε = E[(X − z)T (X − z)|Y = y]

= E[XTX|Y = y] − 2zTE[X|Y = y] + zTz

= (z − E[X|Y = y])T (z − E[X|Y = y]) + E[XTX|Y = y]

− E[X|Y = y]TE[X|Y = y].

Only the first term depends on z, so

z = x̂ = E[X|Y = y]

minimizes the conditional mean-squared error.
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Unconditional MMSEE

In terms of minimum error variance, the conditional mean

X̂(y) = E[X | Y = y]

is optimal, i.e.,

EX|Y [‖X − X̂(y)‖2 | Y = y] ≤ EX|Y [‖X − Z(y)‖2 | Y = y]

for any function Z that may depend on y. Taking expection over Y on
both side gives us

EX,Y [‖X − X̂(Y )‖2] ≤ EX,Y [‖X − Z(Y )‖2]

or loosely
E[‖X − x̂‖2] ≤ E[‖X − z‖2]

i.e., the conditional mean is also optimal in the unconditional minimum
variance sense.
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What does the Kalman filter do?

For a state-space model

xk+1 = Akxk + Bkuk + wk

yk = Ckxk + vk

the Kalman filter minimizes the conditional error variance

E[‖xk+1 − x̂k+1‖
2 | y0, . . . , yk, u0, . . . , uk]

with
x̂k+1 = E[xk+1 | y0, . . . , yk, u0, . . . , uk].

The Kalman filter does this in a recursive way, i.e., x̂k+1 can be computed
using only x̂k, yk and uk.
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The jointly Gaussian conditional distribution

The conditional distribution can be written using Bayes’ rule as

fX|Y (x|y) =
fXY (x, y)

fY (y)
,

which for a jointly Gaussian distribution is equal to

fX|Y (x|y) =
1

(2π)m/2

∣

∣

∣

∣

RXX RXY

RY X RY Y

∣

∣

∣

∣

−1/2

|RY Y |−1/2

exp

{

−1/2

[

x − µx

y − µy

]T [

RXX RXY

RY X RY Y

]−1 [

x − µx

y − µy

]

}

exp {−1/2(y − µy)TRY Y (y − µy)}
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Cholesky factorizations - a useful sidestep
Consider a positive definite matrix A partitioned as

A =

[

A11 a12

a21 a22

]

.

We wish to factor the matrix as A = UDUT , with U unit-diagonal
upper-triangular and D a positive diagonal matrix.

A =

[

U11 u12

0 1

] [

D11 0
0 d22

] [

UT
11 0

uT
12 1

]

=

[

d22u12u
T
12 + U11D11U

T
11 d22u

T
12

d22u
T
12 d22

]

i.e., we have the outline of a recursive procedure for computing UDUT ,

d22 = a22, u12 =
a12

a22

, U11D11U
T
11 = A11 − d22u12u

T
12.
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Block-diagonal factorization

Let’s try the same idea for a block-diagonal factorization

[

A11 A12

A21 A22

]

=

[

I X
0 I

] [

D11 0
0 D22

] [

I 0
XT I

]

=

[

D11 + XD22X
T XD22

D22X
T D22

]

.

It follows that

D22 = A22, X = A12A
−1

22 , D11 = A11 − A12A
−1

22 A21,

i.e.,

[

A11 A12

A21 A22

]

=

[

I A12A
−1

22

0 I

] [

A11 − A12A
−1

22 A21 0
0 A22

] [

I 0
A−1

22 A21 I

]
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Inverse factorization

What we need is

A−1 =

[

I 0
−A−1

22 A21 I

] [

(A11 − A12A
−1

22 A21)
−1 0

0 A−1

22

] [

I −A12A
−1

22

0 I

]

If we denote S11 = (A11 − A12A
−1

22 A21)
−1 then we have

[

A11 A12

A21 A22

]−1

=

[

S11 −S11A12A
−1

22

−A22A21S11 A−1

22 + A−1

22 A21S11A12A
−1

22

]

and

[

x
y

]T [

S11 −S11A12A
−1

22

−A22A21S11 A−1

22 + A−1

22 A21S11A12A
−1

22

] [

x
y

]

=

(x − A12A
−1

22 y)TS11(x − A12A
−1

22 y) + yTA−1

22 y.
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Back to the jointly Gaussian conditional distribution

Using the results for the inverse factorization we have that

[

x − µx

y − µy

]T [

RXX RXY

RY X RY Y

]−1 [

x − µx

y − µy

]

=

(x − x̄)T (RXX − RXY R−1

Y Y RY X)−1(x − x̄) + (y − µy)
TR−1

Y Y (y − µy)

where x̄ = µx + RXY R−1

Y Y (y − µy). In other words,

fX|Y (x|y) =
|RXX − RXY R−1

Y Y RY X|−1/2

(2π)m/2
×

exp{−1/2(x − x̄)T (RXX − RXY R−1

Y Y RY X)−1(x − x̄)}

describes a Gaussian distribution with

E[X | Y ] = µx + RXY R−1

Y Y (y − µy)

cov(X | Y ) = RXX − RXY R−1

Y Y RY X.
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Conditioning for uncorrelated variables

Assume that X,Y1, Y2, . . . , Yn are jointly Gaussian and that Y1, Y2, . . . , Yn

are mutually uncorrelated. Then

E[X |Y1, Y2, . . . , Yn] = E[X |Y1]+E[X |Y2]+ · · ·+E[X |Yn]+ (n− 1)µx.

This follows from

E[X | Y1, Y2, . . . , Yn] = µx + RXY R−1

Y Y (y − µy)

by observing that RY Y is a diagonal matrix for uncorrelated variables
Y1, . . . , Yn.

In the next lecture we will combine these results and derive the solution
the Kalman filter.
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