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Optimal receiver design
Receiver: 
A receiver structure is postulated (front-end filter + symbol-rate sampler + memory-less 
decision device). For transmission of 1 symbol, it was found that the front-end filter 
should be `matched’ to the received pulse. 
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Digital equalizer types
• Viterbi equalizer: Finds the maximum likelihood (ML) optimal solution to the equalization problem. Its goal is to minimize the 

probability of making an error over the entire sequence.

• Linear equalizer: processes the incoming signal with a linear filter

• MMSE equalizer: designs the filter to minimize E[|e|2], where e is the error signal, which is the filter output minus the transmitted signal.

• Zero forcing equalizer: approximates the inverse of the channel with a linear filter.

• Decision feedback equalizer: augments a linear equalizer by adding a filtered version of previous symbol estimates to the original 
filter output.

• Blind equalizer: estimates the transmitted signal without knowledge of the channel statistics, using only knowledge of the 
transmitted signal's statistics.

• Adaptive equalizer: is typically a linear equalizer or a DFE. It updates the equalizer parameters (such as the filter coefficients) as it 
processes the data. Typically, it uses the MSE cost function; it assumes that it makes the correct symbol decisions, and uses its 
estimate of the symbols to compute e, which is defined above.

• BCJR equalizer: uses the BCJR algorithm (also called the Forward-backward algorithm) to find the maximum a posteriori (MAP) 
solution. Its goal is to minimize the probability that a given bit was incorrectly estimated.

• Turbo equalizer: applies turbo decoding while treating the channel as a convolutional code.



Optimal receiver
Problem Statement :
• Optimal receiver structure consists of 

* Whitened Matched Filter (WMF) front-end
(= matched filter + symbol-rate sampler + equalizer filter)

* Maximum Likelihood Sequence Estimator (MLSE),      
(instead of simple memory-less decision device)

• Equalization – Overview
• Maximum Likelihood Sequence Estimator
• Zero-forcing Equalization

Linear filters 
Decision feedback equalizers



Equalization

Linear equalization (LE):

Performance is not very good when the frequency response of 
the frequency selective channel contains deep fades.

Zero-forcing algorithm aims to eliminate the intersymbol interference (ISI) 
at decision time instants (i.e. at the center of the bit/symbol interval).



Linear equalization, zero-forcing algorithm
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Zero-forcing equalizer
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Zero-forcing Equalizers

`Figure of merit’

• receiver with higher `figure of merit’ has lower error probability

• is `matched filter bound’ (transmission of 1 symbol)

• DFE-performance lower than MLSE-performance, as DFE relies on only the first channel 
impulse response sample      (eliminating all other       ‘s), while MLSE uses energy of all 
taps      .  

MFMLSEDFELE  

MF

0h ih
ih



Problem statement (revisited)

• Cheap alternative for MLSE/Viterbi ?
• Solution: equalization filter + memory-less decision device (`slicer’)

Linear filters
Non-linear filters (decision feedback)

• Complexity : linear in number filter taps 
• Performance : with channel coding, approaches MLSE performance



Minimum Mean Square Error Equalizers
• Zero-forcing equalizers: minimize noise at slicer input under zero-ISI 

constraint
• A minimum mean square error (MMSE) estimator is an estimation 

method which minimizes the mean square error (MSE), which is a 
common measure of estimator quality, of the fitted values of a dependent 
variable.

• In estimation/ decision theory, a Bayes estimator or a Bayes action is 
an estimator or decision rule that minimizes the posterior expected value of a loss 
function (i.e., the posterior expected loss). Equivalently, it maximizes the posterior 
expectation of a utility function. An alternative way of formulating an estimator 
within Bayesian statistics is maximum a posteriori estimation.

• Generalize the criterion of optimality to allow for residual ISI at the slicer 
& reduce noise variance at the slicer
=Minimum mean-square error equalizers



Minimum Mean Square Error (MMSE)

The aim is to minimize: 2
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MMSE Equalizers

- signal power spectrum (normalized)
- noise power spectrum (white)
- for zero noise power -> zero-forcing
- (in the nominator) is a discrete-time matched filter,   

often `difficult’ to realize in practice 
(stable poles in H(z) introduce anticausal MF) 
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MMSE Equalizers
MMSE Decision Feedback Equalizer :
• MMSE-LE has correlated `slicer errors’  (=difference between slicer in- and output)
• MSE may be further reduced by incorporating a `whitening’ filter (prediction filter) 

E(z) for the slicer errors

• E(z)=1 -> linear equalizer 
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MSE vs. equalizer coefficients
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quadratic multi-dimensional function of equalizer 
coefficient values

MMSE aim: find minimum value directly (Wiener solution), or use an algorithm that 
recursively changes the equalizer coefficients in the correct direction (towards the 
minimum value of J)!

Illustration of case for two real-valued equalizer 
coefficients (or one complex-valued coefficient)



Wiener solution

opt Rc p

R = correlation matrix (M x M) of received (sampled) signal values

p = vector (of length M) indicating cross-correlation between received signal 
values     and estimate of received symbol 

copt = vector (of length M) consisting of the optimal equalizer coefficient values

(We assume here that the equalizer contains M taps) 

We start with the Wiener-Hopf equations in matrix form:
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Correlation matrix R & vector p

• Before we can perform the stochastical expectation operation, we must know the
stochastical properties of the transmitted signal (and of the channel if it is 
changing). 

• Usually we do not have this information => some non-stochastical algorithm like
Least-mean-square (LMS) must be used.  
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Algorithms
Stochastical information (R and p) is available:

1.  Direct solution of the Wiener-Hopf equations:

2.  Newton’s algorithm (fast iterative algorithm)

3.  Method of steepest descent (this iterative algorithm is slow 
but easier to implement)

R and p are not available:

Use an algorithm that is based on the received signal sequence directly. One 
such algorithm is Least-Mean-Square (LMS). 

opt Rc p 1
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Inverting a large 
matrix is difficult!



Conventional linear equalizer of LMS type
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Joint optimization of coefficients and phase

Equalizer filter
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Least-mean-square (LMS) algorithm
(derived from “method of steepest descent”)

for convergence towards minimum mean square error (MMSE)
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Effect of iteration step size
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Decision feedback equalizer
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The purpose is again to minimize

Decision feedback equalizer (cont.)
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Feedforward filter (FFF) is similar to filter in linear equalizer 
tap spacing smaller than symbol interval is allowed     => fractionally 
spaced equalizer 
=> oversampling by a factor of 2 or 4 is common

Feedback filter (FBF) is used for either reducing or canceling samples of 
previous symbols at decision time instants 

tap spacing must be equal to symbol interval

where



The coefficients of the feedback filter (FBF) can be obtained in either of two 
ways: 

Recursively (using the LMS algorithm) in a similar fashion as FFF 
coefficients 

By calculation from FFF coefficients and channel coefficients (we 
achieve exact ISI cancellation in this way, but channel estimation is 
necessary):

Decision feedback equalizer (cont.)
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Channel estimation circuit
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Channel estimation circuit (cont.)

1. Acquisition phase
Uses “training sequence”
Symbols are known at receiver,          .

2. Tracking phase
Uses estimated symbols (decision directed mode)  
Symbol estimates are obtained from the decision circuit (note the delay 
in the feedback loop!) 
Since the estimation circuit is adaptive, time-varying channel coefficients 
can be tracked to some extent.
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Alternatively: blind estimation (no training sequence)



Channel estimation circuit in receiver
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