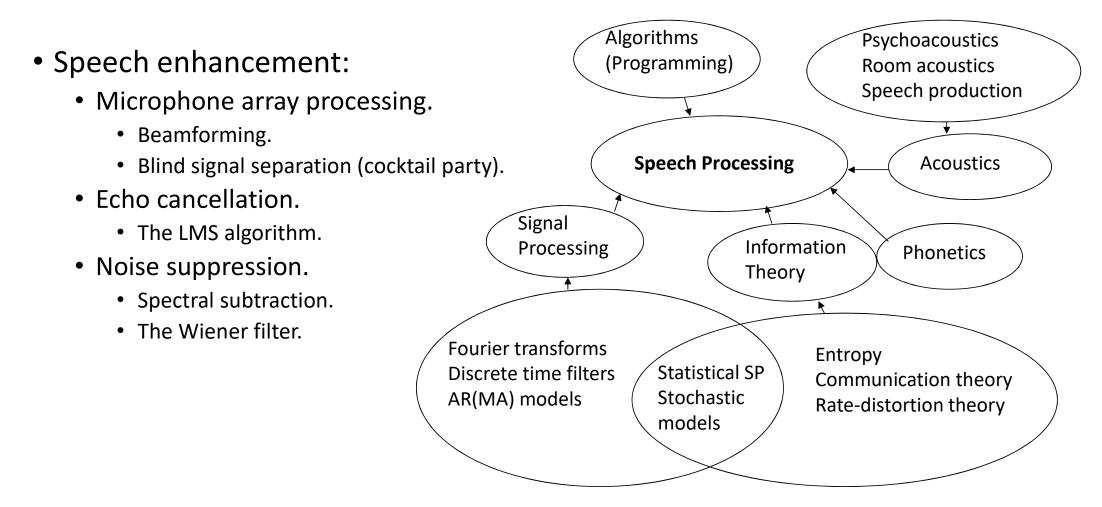

IEE 1711: Applied Signal Processing

Professor Muhammad Mahtab Alam (muhammad.alam@taltech.ee) Lab Instructor: Julia Berdnikova


Outline

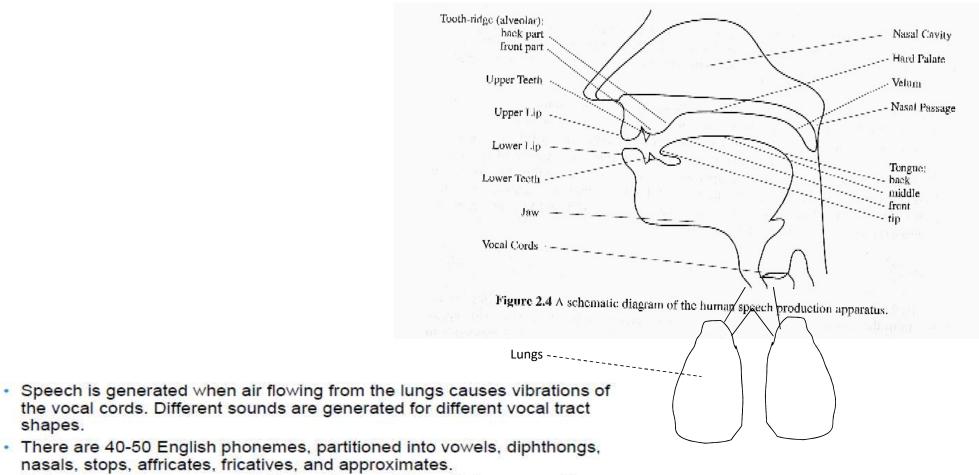
- Lecture 1: Applications of Digital Signal Processing
 - Followup
- Lecture 2: Speech Signal Processing
 - Basic Construct of the Speech Signal
 - Speech Waveforms Classifications
 - Time-Domain Methods
 - Zero Crossing
 - Speech Detection
 - Pitch of the Speech Signal
- Summary

Speech Signal Processing (SSP)

- Speech technology plays a critical role in various markets, including call centers, and mobile and consumer communication.
- The speech chain consists of several technologies that include speech recognition, speech synthesis, language understanding, dialog management, and language generation.
- Speech coding and synthesis are essential for lowering transmission bandwidth and reducing storage requirements.

Applications of Speech Processing

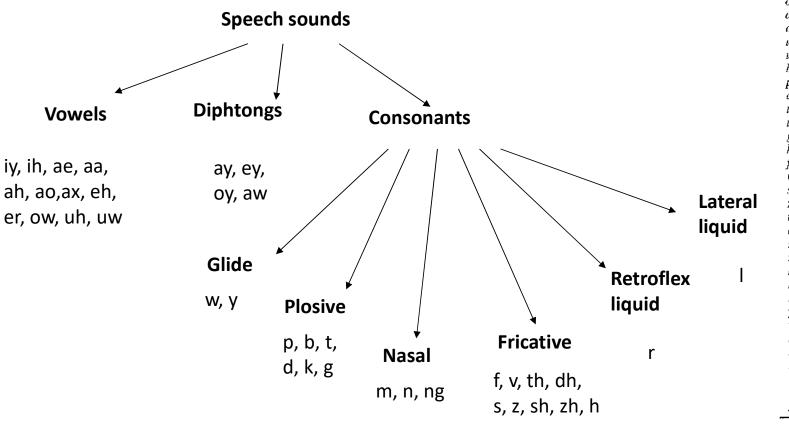
Algorithmic Domains of Speech Signal Processing


- Analysis of speech signals:
 - Fourier analysis; spectrogram
 - Autocorrelation; pitch estimation
 - Linear prediction; compression, recognition
 - Cepstral analysis; pitch estimation, enhancement
- Speech compression.
 - Scalar quantization (PCM, DPCM). Phoneme Hierarchybv bgp+äüüüü::::...*L'Ä_O

L.

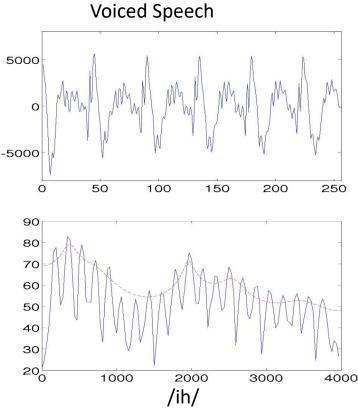
- (Transform Coding.)
- Vector quantization.
- Speech coders: Linear Predictive Vocoder, Mixed/Code Eecitation Linear Predictive etc.
- Statistical modeling of speech.
 - Gaussian mixtures; speaker identification.
 - Hidden Markov models; speech recognition.

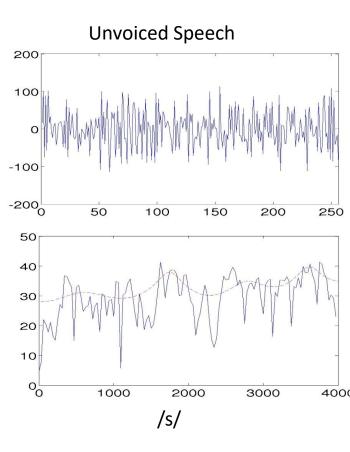
Speech Production


shapes.

 Voiced sounds are more periodic in nature and have higher energy than unvoiced sounds. All vowels, diphthongs, nasals and approximates are voiced.

Speech Sounds - Phoneme Hierarchy


- Coarse classification with *phonemes*. Language dependent. About 50 in English.
- A *phone* is the acoustic realization of a phoneme.
- Allophones are context dependent phonemes.



Phonemes	TTI ITI	
Filonemes	Word Examples	Description
iy	feel, eve, me	front close unrounded
ih	fill, hiı, lid	front close untounded ()
ae	at, carry, gas	front open unrounded (b
aa	father, ah, car	back open unrounded
ah	cut, bud, up	open-mid back unround
ao	d o g, l aw n, c au ght	open mid back round
ay	tie, ice, bite	diphthong with quality:
ax	ago, comply	central close mid (schwa
ey	ate, day, tape	front close-mid unround
eh	pet, berry, ten	front open-mid unround
er.	turn, fur, meter	central open-mid unrout
ow	go, own, tone	 back close-mid rounded
aw	foul. how, our	diphthong with quality:
оу	toy, coin, oil	diphthong with quality:
uh	book, pull, good	 back close-mid unround
иw	tool, crew, moo	back close round
b	big, able, tab	voiced bilabial plosive
P	put, open, tap	 voiceless bilabial plosiv
d	dig, idea, wad	voiced alveolar plosive
t	tulk, sat	 voiceless alveolar plosiv
t	meter	alveolar flap
g	gul, angle, tag	voiced velar plosive
g k	cut, ken, take	voiceless velar plosive
f	fork, after, if	 voiceless labiodental fri
v	val, over, have	 voiced labiodental frica
\$	sit, cast, toss	 voiceless alveolar fricat
z	zap, lazy, haze	voiced alveolar fricativ
th	thin, nothing, truth	voiceless dental fricativ
dh	then, father, scythe	voiced dental fricative
sh	she, cushion, wash	voiceless postalveolar f
zh	genre, azure	 voiced postalveolar fric
l	lid	alveolar lateral approxi
l	elbow, sail	 velar lateral approxima
r	red, part, fa r	retroflex approximant
У	yacht, yard	palatal sonorant glide
и ;	with, away	labiovelar sonorant glid
hh	help, ahead, hotel	voiceless glottal fricativ
m	mat, amid, aim	bilabial nasal
п	no, end, pan	alveolar nasal
ng	sing, anger	velar nasal
ch	chin, archer, march	voiceless alveolar affric
jh	joy, agile, edge	voiced alveolar affricat

Speech Waveform Characteristics

- Loudness
- Voiced/Unvoiced.
- Pitch.
 - Fundamental frequency. -5000
- Spectral envelope.
 - Formants.

Methods for Speech Processing in Time-Domain

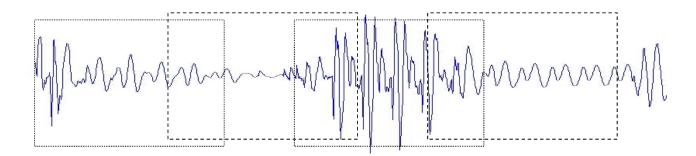
There are several operations that can be applied directly to the speech signal

For example,

Autocorrelation Energy analysis Pitch analysis

Most operations require short-time analysis. For energy,

$$E = \sum_{m=-\infty}^{\infty} x^2(m)$$

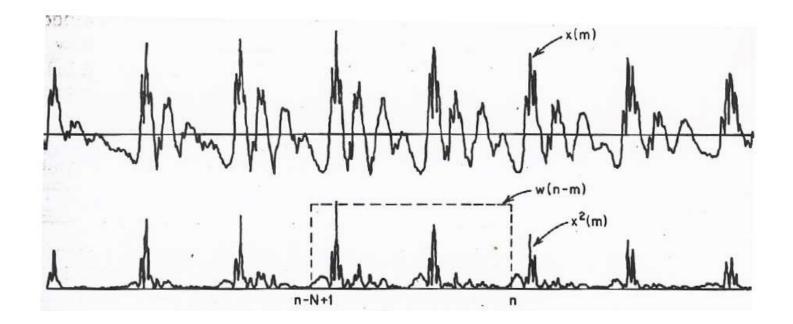

In practice, short-time analysis is computed as

$$E_n = \sum_{m=n-N+1}^n x^2(m)$$

for frame n of N-samples.

Short-Time Speech Analysis

- Segments (or frames, or vectors) are typically of length 20 ms.
 - Speech characteristics are constant.
 - Allows for relatively simple modeling.
- Often overlapping segments are extracted.



Methods for Speech Processing in Time-Domain

• This is equivalent to applying a square window

 $w(n) = 1 \qquad 0 \le n \le N - 1$ 0 Otherwise

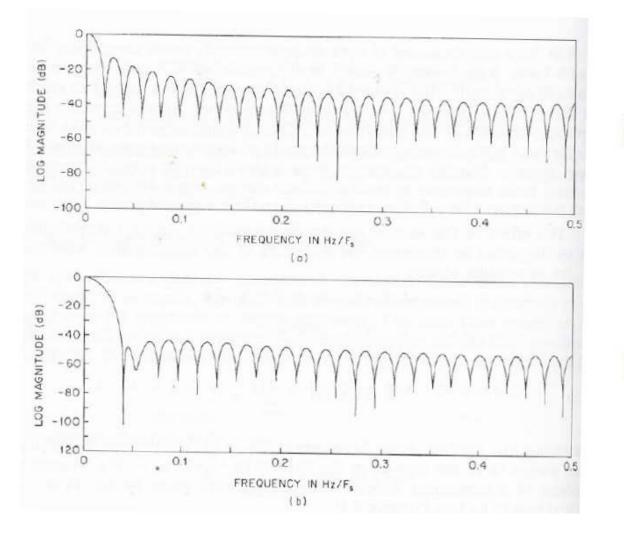
which is a linear operation, and summing the square of the signal.

Windowing

Windowing speech is equivalent to applying a filtering effect (low-pass filtering) that help for (a) smoothing, and (b) segmenting the signal into smaller windows.There are several different types of windows that can be applied on a speech signal

• Rectangular

$$h(n) = 1$$
 $0 \le n \le N-1$
 0 Otherwise


Frequency Response

$$H(e^{jwT}) = \frac{\sin(wNT/2)}{\sin(wT/2)} e^{-jwT(N-1)/2}$$

Sampling Frequency

$$F_s = 1/T$$

Windows Comparison

Rectangular

Hamming

Hamming Window

Hamming

$$h(n) = 0.54 - 0.46 \cos(2\pi n/(N-1))$$
 $0 \le n \le N-1$
0 Otherwise

- Has twice through-bandwidth and much better attenuation than rectangular window
- Attenuation is independent of window duration, but duration is inversely proportional to the bandwidth.

Window Size

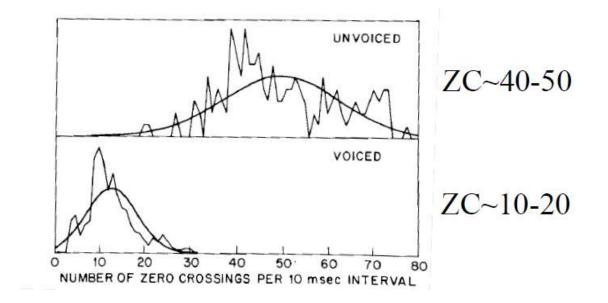
- A suitable selection of N is necessary to capture sufficient characteristics from the signal (e.g., pitch information).
- Window size is typically larger than one pitch period (e.g., 20-30 msec) to avoid large fluctuations in the short-time energy.
- Energy is a good indicator of voicing
 - High energy → Voiced sounds
 - Low to medium energy → Unvoiced sounds
 - Very low energy → Silence and background noise.
- Energy is a good voicing indicator for high SNR

Zero Crossing Rate

- Speech samples have both negative and positive signs.
- Crossing rate is a simple measure of frequency contents in the signal
- To reliably compute the zero crossing rate, a signal needs to pass through a Bandpass filter to eliminate dc offset, and low-frequency noise.
- · For a sinusoidal signal,

 $ZC = 2f_0 / F_s$ "Zeros Crossing is said to occur of successive samples have diferent algebraic signs."

For speech

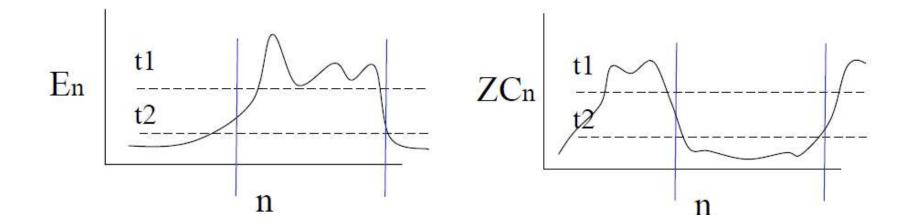

$$ZC_n = \sum_{m=-\infty}^{\infty} |\operatorname{sgn}[x(m)] - \operatorname{sgn}[x(m-1)]| w(n-m)$$

$$sgn(x) = 1 \qquad x \ge 0$$
$$= -1 \qquad x < 0$$
$$w(n) = \frac{1}{2N} \qquad 0 \le n \le N - 1$$
$$= 0 \qquad Otherwise$$

Zero Crossing for Detecting Voiced/Unvoiced

- Most speech energy < 4KHz
- For voiced speech, energy is typically at low frequency
- For unvoiced speech, energy is at high frequency

High frequency \rightarrow high ZC \rightarrow Unvoiced Low frequency \rightarrow Low ZC \rightarrow Voiced

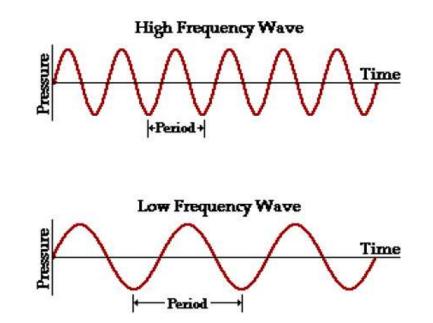

Speech/Non-Speech Classification

- En and ZCn can be applied for speech/non-speech separation.
- These measurements are sensitive to background noise and weak fricatives.
- In many cases, even for high SNR, it is difficult to locate weak fricatives, nasals, weak
 plosives especially if they occur at the beginning or end of a sentence.

How would you create a speech/non-speech classifier using En and ZCn?

Speech Detection – Example (1/2)

- Initial 100-200 msec are assumed background, and estimates for the mean and standard deviation of Eo and ZCo are computed.
- Based on these estimates, appropriate thresholds are selected for determining speech regions.
 - Two or more thresholds can also be instituted for more detailed modeling. The signal can be classified into speech present/speech may be present/speech is not present.



Speech Detection – Example (2/2)

- "Segment duration" can also be used as a feature to establish smoother and more reliable speech regions.
- At the marked regions of speech, forward and backward extension is typically allowed to embrace weak fricatives and plosives.
- A statistical model can also be used for speech detection. A classifier can be trained on a subset of manually-labeled data, and then be presented with various features to discriminate speech from non-speech.

Pitch of the Speech Signal

- Pitch (fundamental frequency, or periodicity) is the period between two consecutive openings of the vocal cords.
- The primary difference between adult male and female/prepubescent speech is pitch. Before puberty, pitch frequency for normal speech ranges between 150-400 Hz for both males and females. After puberty, the vocal cords of males undergo a physical change, which has the effect of lowering their pitch frequency to the range 80-160 Hz.
- Pitch estimate is essential for many aspects of speech processing including speech coding, synthesis, recognition, and speaker verification.
- Most successful approaches to estimating pitch are based on autocorrelation.

Short-term Auto-Correlation (1/4)

• Long-term autocorrelation function:

$$AC_k = \sum_{m=-\infty}^{\infty} x(m).x(m+k)$$

• If the signal is periodic with pitch P,

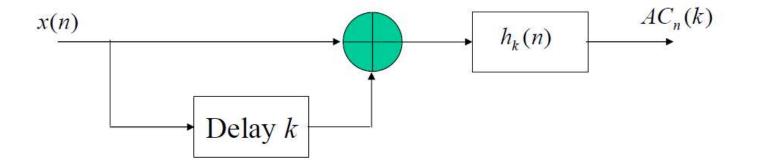
$$AC_k = AC_{k+P}$$

Properties of Autocorrelation Function:

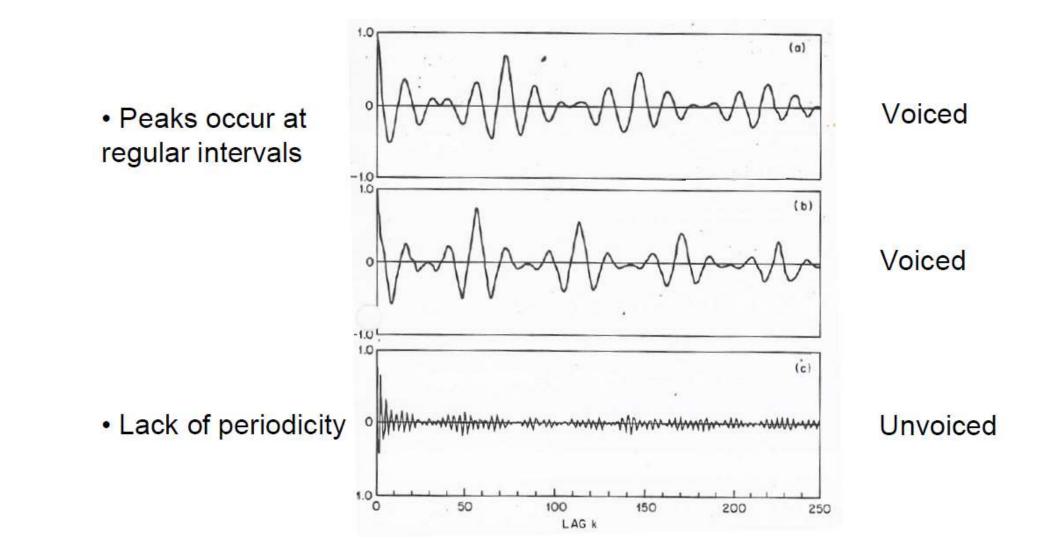
- Symmetric *ACk=AC-k*
- Maximum at k=0, +-P,+-2P,
- ACo is the signal energy

• Pitch is computed by finding the location of the first maximum in the autocorrelation function

Short-term Auto-Correlation (2/4)


Short-term autocorrelation function:

$$AC_{n}(k) = \sum_{m=0}^{N-1-k} x(n+m) \cdot x(n+m+k) \cdot h_{k}(n-m)$$


• This is similar to applying a filter on the sequence x(m).x(m+k), where

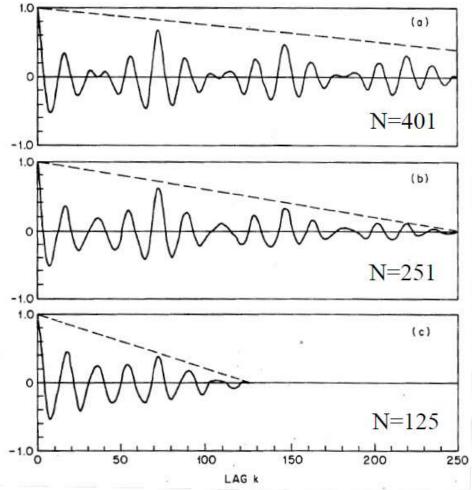
$$h_k(n) = w(n).w(n+k)$$

• The window w(.) is typically symmetric at m=0. It can be a rectangular or Hamming.

Short-term Auto-Correlation (3/4)

Short-term Auto-Correlation (4/4)

Selection of Window Size:


Analysis window must include at least two pitch periods (20-40msec)
Should be small enough to capture details of the signal (less computation)

Tapering Effect:

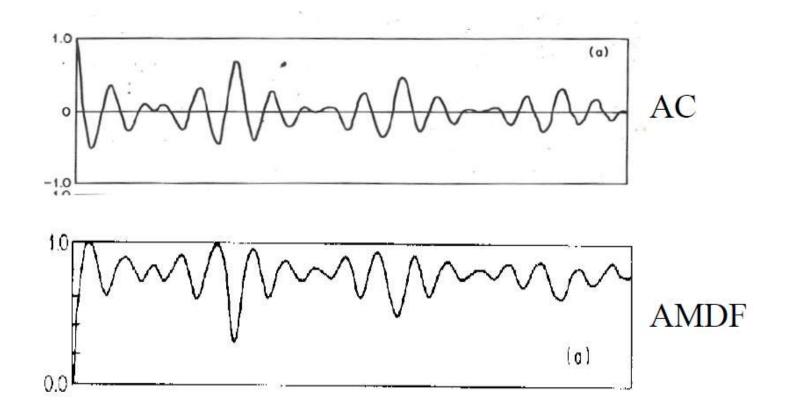
• Using a rectangular window, an autocorrelation function will be tapered by

$$AC_k = 1 - k/N |k| < N$$

• Can be avoided by normalization, or by extending the autocorrelation window.

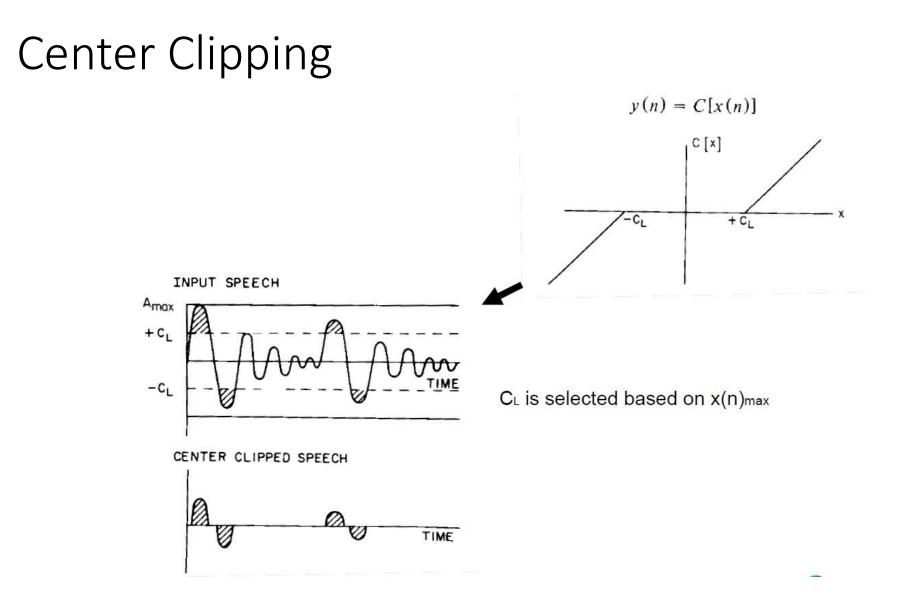
Average Magnitude Difference Function

· For a true periodic signal,

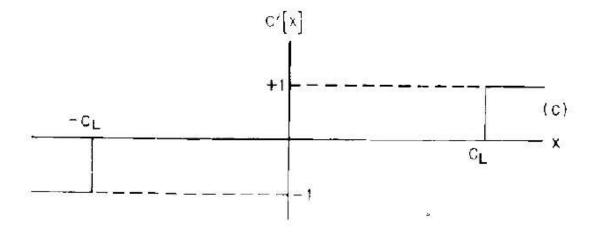

Where, d(n) = x(n) - x(n-k)d(n) = 0 $k = 0, \pm P, \pm 2P, ...$

AMDF function

$$AM_{n}(k) = \sum_{m=-\infty}^{\infty} |x(n+m)w_{1}(m) - x(n+m-k)w_{2}(m-k)|$$

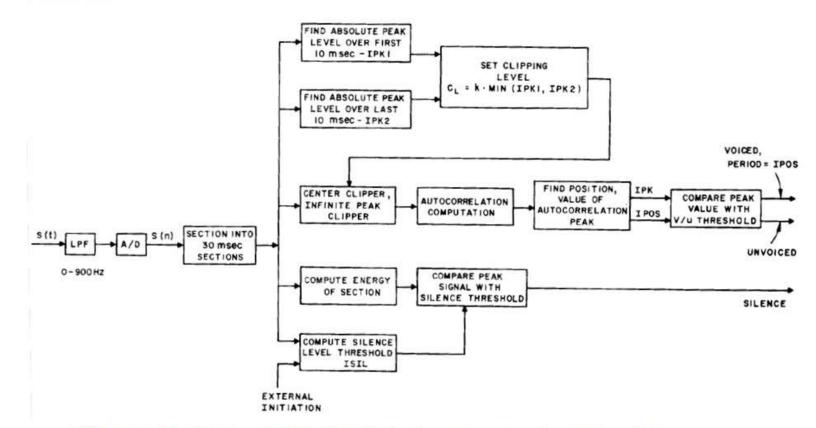

•AMDF function can be implemented with subtraction, addition and absolute value operation – more efficient than computing an autocorrelation function.

AMDF Vs AC



Pitch Period

- Autocorrelation (or AMDF) can be used to estimate the pitch period of speech
- To enhance the pitch estimate, details of the autocorrelation function, corresponding to high frequency variations, are minimized? Why?
 - Spectral flattening is necessary to minimize vocal tract modeling effects and hence enhance pitch harmonics.
- Several methods are used for pitch enhancements. For example,
 - Center clipping
 - 3-level center clipping



3-Level Center Clipping

- Convert speech signal above/below CL into +1/-1, otherwise 0.
- · This non-linear filtering avoids magnitude effects.

Methods for Pitch Estimation

- · May want to do speech detection first using energy and zero crossing
- · Hamming window may be applied to impose low-magnitude smoothing