IEE1711 Applied signal processing

Exercise 1

Julia Berdnikova julia.berdnikova [ät] ttu.ee

Timetable

Thursday

	10:00-11:30 - practice	1-16
10:00-11:30	IVEM22	weeks: even
	teadur Julia Berdnikova	U02-206

	14:00-15:30 - exercise	1-16
14:00-15:30	IVEM21, IVEM22	weeks: odd
	teadur Julia Berdnikova	U02-206

14:00-15:30 - practice	1-16
IVEM21	weeks: even
teadur Julia Berdnikova	U02-206

IEE1711 Final grade

The final grade will be formed as the sum of the three grades: **practices**, **individual work and written exam**.

Final Grade = Practices (25%) + Individual work (25%) + Exam (50%)

PREREQUISITES FOR FINAL EXAMINATION:

Five practices and individual work with presentation are assessed.

Practice

 The practical assignments must be presented in order to be able to take the exam.

Each student is given five individual assignments.
 Each assignment gives a maximum 5 points and presenting all lab assignments will give a maximum of 25 points (25 %) which will count towards the final course mark.

Practice

Practical work is given maximum points if:

- the assignment is done correctly, possible errors and shortcomings are corrected
- the assignment is presented on time (presenting the assignment 2 weeks late will give a maximum of 3 points and presenting more than 2 week late will give a maximum of 0 points)

Penalties for late submission will count towards the final course mark

 The results of the lab assignments are presented in a report form.

Individual work (project)

- Assessment preconditions: The project is submitted to the supervisor on time in the way and format the supervisor requests. Deviations need to be agreed with the supervisor before the deadlines.
- Individual work should be presented.
- Assessment: The individual work will be assessed by the supervisor if all the learning outcomes are fulfilled and will give a maximum of 25 points (25 %)

Presentation of the individual work

<u>Assessment preconditions:</u> The presentation is given on time in the way and format the supervisor requests. Deviations need to be agreed with the supervisor before the deadlines.

Exercises (Matlab software and board)

- The main aim is to prepare students for a practice and individual work
- To show the methods and applications that could be used in practice

Exercise 1 Communication system

Figure 1.1 Block diagram of a typical digital communication system.

Communication system

Communication theory

Shannon-Hartley theorem AWGN channel (Aditive White Gaussian Noise)

$$C = W \log_2 \left(1 + \frac{S}{N} \right)$$

C is channel capacity (bits per second, bit/s), (maximum rate)

W - bandwidth (Hz)

S is the signal power over the bandwidth (W või V^2)

N is the average power of the noise and interference over the bandwidth (W $v\tilde{o}i V^2$)

S/N is the signal-to-noise ratio (SNR) or (CNR – carrier-to-noise ratio) (linear relation)

Communication theory

Bandwidth Efciency, Spectral efficiency

$$\eta = \frac{\text{Transmission Rate}}{\text{Channel Bandwidth } W} \text{ [bits/s/Hz]}.$$

Shannoni limit

Fundamental limit: For infinite amounts of bandwidth, i.e., $\eta_{\text{max}} \to 0$, we obtain

$$\frac{E_b}{N_0} \geq \lim_{\eta_{\rm max} \to 0} \frac{2^{\eta_{\rm max}} - 1}{\eta_{\rm max}} = \ln(2) = -1.59 {\rm dB}$$

This is the absolute minimum signal energy to noise power spectral density ratio required to reliably transmit one bit of information.

Source encoding

Data compression:

- Files (ex. .zip, jpg)
- Audio codecs
- Video codecs
- etc

Channel coding

- Error detection coding
 - Repetition codes
 - Parity bits
 - Checksums
 - Cyclic redundancy checks (CRCs)
 - Cryptographic hash functions
 - Error-correcting codes
- Error corrected codes
 - Convolutional codes or block codes
 - ARQ
 - Hybrid schemes (FEC+ARQ)

EEC (error-correcting code)
FEC (forward error correction)

Automatic repeat request (ARQ)

Channel models

Analog channel models

- Noise model, for example Additive white Gaussian noise (AWGN) channel
- Phase noise model
- Interference model, for example cross-talk (co-channel interference) and intersymbol interference (ISI)
 Distortion model, for example a non-linear channel model causing intermodulation distortion (IMD)
 Frequency response model, including attenuation and phase-shift Group delay model Modelling of
 underlying physical layer transmission techniques, for example a complex-valued equivalent baseband
 model of modulation and frequency response Radio frequency propagation model, for example Log distance path loss model
- Fading model, for example Rayleigh fading, Ricean fading, log-normal shadow fading and frequency selective (dispersive) fading
- Doppler shift model, which combined with fading results in a time-variant system
- Ray tracing models, which attempt to model the signal propagation and distortions for specified transmitter-receiver geometries, terrain types, and antennas
- Mobility models, which also causes a time-variant system

Digital channel models (memory or memoryless) (symmetric or non-symmetric)

- Binary symmetric channel (BSC)
- Binary bursty bit error channel model, a channel "with memory"
- Binary erasure channel (BEC)
- Packet erasure channel
- Arbitrarily varying channel (AVC)

Modulations

Amplitude modulation (AM)

Angle modulation:

- Frequency modulation (FM)
- Phase modulation (PM)

https://en.wikipedia.org/wiki/Modulation

N –noncoherently

D – differentially

Abbreviation	Alternate Abbr.	Descriptive Name		
Amplitude and Amplitude/Phase Modulations				
ASK	T	Amplitude Shift Keying (generic name)		
OOK	ASK	Binary On-Off Keying		
MASK	MAM	M-ary ASK, M-ary Amplitude Modulation		
QAM		Quadrature Amplitude Modulation		
	Frequency Shift Keying (FSK)			
BFSK	FSK	Binary Frequency Shift Keying		
MFSK		M-ary Frequency Shift Keying		
	Phase Shift Keying (PSK)			
BPSK	PSK	Binary Phase Shift Keying		
QPSK	4PSK	Quadrature Phase Shift Keying		
OQPSK	SQPSK	Offset QPSK, Staggered QPSK		
π /4-QPSK		π /4 Quadrature Phase Shift Keying		
MPSK		M-ary Phase Shift Keying		

Abbreviation	Alternate Abbr.	Descriptive Name	
Continuous Phase Modulations (CPM)			
SHPM		Single-h (modulation index) Phase Modulation	
MHPM		Multi-h Phase Modulation	
LREC		Rectangular Pulse of Length L	
CPFSK		Continuous Phase Frequency Shift Keying	
MSK	FFSK	Minimum Shift Keying, Fast FSK	
SMSK		Serial Minimum Shift Keying	
LRC		Raised Cosine Pulse of Length L	
LSRC		Spectrally Raised Cosine Pulse of Length L	
GMSK		Gaussian Minimum Shift Keying	
TFM		Tamed Frequency Modulation	
	Nonconstant Envelope Modulations		
QORC		Quadrature Overlapped Raised Cosine Modulation	
SQORC		Staggered QORC	
QOSRC		Quadrature Overlapped Squared Raised Cosine Modulation	
Q ² PSK		Quadrature Quadrature Phase Shift Keying	
IJF-OQPSK		Intersymbol-Interference/Jitter-Free OQPSK	
TSI-OQPSK		Two-Symbol-Interval OQPSK	
SQAM		Superposed-QAM	
XPSK		Crosscorrelated QPSK	

ASK (Amplitude-Shift Keying)

$$s_i(t) = A_i p(t) \cos(2\pi f_c t), \quad 0 \le t \le T \qquad i = 1, 2, \dots M$$

• FSK (Frequency-Shift Keying)

$$s_i = A\cos(2\pi f_i t + \Phi_i) \qquad i = 1, 2, 3, \dots M$$

• **PSK** (Phase-Shift Keying)

$$s_i(t) = A\cos(2\pi f_c t + \theta_i), \quad 0 \le t \le T$$
$$i = 1, 2, ..., M \qquad \theta_i = \frac{(2i - 1)\pi}{M}$$

SNR and BER

Signal to noise ratio:

- **SNR** (linear or dB) Ratio of signal power to noise power
- **Eb/No** Ratio of information bit energy per symbol to noise power spectral density
- Es/No Ratio of information symbol energy per symbol to noise power spectral density

Bit error rate: BER – the number of bit errors divided by the total number of transferred bits

Modulator / Demodulator

Example: BPSK modulation

Modulator:

Demodulator (coherent):

carrier recovery (CR)

Bit error probability (coherent):

$$P_b=Q\left(\sqrt{rac{2E_b}{N_0}}
ight)$$
 or $P_e=rac{1}{2}\operatorname{erfc}igg(\sqrt{rac{E_b}{N_0}}igg)$

Criteria of Choosing Modulation Scemes for Communication Systems

- power efficiency (bit error rate or bit error probability)
- bandwidth efficiency,
- system complexity.

Communication model in Matlab Task 1.

- Run bertool application in Matlab
- Calculate BER curves for BPSK, QPSK, QAM and FSK modulations (AWGN channel)

Task 2. Simplified communications model

- Generate known binary sequence (length <20)
- Modulate sequence with BPSK modulator and send it to the AWGN channel
- Receive the sequence with demodulator
- Calculate BER
- Change the transmitter sequence to a random binary sequence (length >1000) and calculate BER

